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We address the problem of estimating smoothly varying baseline trends
in time series data. This problem arises in a wide range of fields, including
chemistry, macroeconomics and medicine; however, our study is motivated
by the analysis of data from low cost air quality sensors. Our methods ex-
tend the quantile trend filtering framework to enable the estimation of mul-
tiple quantile trends simultaneously while ensuring that the quantiles do not
cross. To handle the computational challenge posed by very long time se-
ries, we propose a parallelizable alternating direction method of multipliers
(ADMM) algorithm. The ADMM algorthim enables the estimation of trends
in a piecewise manner, both reducing the computation time and extending the
limits of the method to larger data sizes. We also address smoothing parame-
ter selection and propose a modified criterion based on the extended Bayesian
information criterion. Through simulation studies and our motivating appli-
cation to low cost air quality sensor data, we demonstrate that our model
provides better quantile trend estimates than existing methods and improves
signal classification of low-cost air quality sensor output.

1. Introduction. In the last decade, low cost and portable air quality sensors have en-
joyed dramatically increased usage. These sensors can provide an uncalibrated measure of a
variety of pollutants in near real time but deriving meaningful information from sensor data
remains a challenge (Snyder et al. (2013)). For example, the “SPod” is a low-cost sensor
currently being investigated by researchers at the U.S. Environmental Protection Agency to
detect volatile organic compound (VOC) emissions from industrial facilities (Thoma et al.
(2016)). Due to changes in temperature and relative humidity, the output signal exhibits a
slowly varying baseline drift on the order of minutes to hours. Figure 1 provides an example
of measurements from three SPod sensors colocated at the border of an industrial facility.
All of the sensors respond to the pollutant signal which is illustrated by the three sharp tran-
sient spikes at 11:32, 14:10 and 16:03. However, the baseline drift varies from one sensor to
another, obscuring the detection of the peaks that alert the intrusion of pollutants. We show
later that by estimating the baseline drift in each sensor and removing it from the observed
signals, peaks can be reliably detected from concordant residual signals from a collection of
SPods using a simple data-driven thresholding strategy. Thus, accurately demixing a noisy
observed time series into a slowly varying component and a transient component can lead to
greatly improved and simplified downstream analysis.

While this work is motivated by the analysis of data from low-cost air quality sensors, the
problem of demixing noisy time series into trends and transients is ubiquitous across many
applications. This includes electrocardiogram data (Luo et al. (2013)), electrooculographic
data (recording of eye movements) (Pettersson et al. (2013), Marandi and Sabzpoushan
(2015)), mass spectrometry (Coombes, Baggerly and Morris (2007), Du, Kibbe and Lin
(2006)), chromatography (Ning, Selesnick and Duval (2014)), macroeconomics (Yamada
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FIG. 1. Example of three colocated SPod PID sensor readings over a 24 hour period.

(2017)), environmental science (Brantley et al. (2014), Mecozzi (2014)), laser-induced break-
down spectroscopy (Franco, Milori and Boas (2018)) and astronomy (Oh et al. (2004)). In
most instances, scalar functions of time y(t) are observed and assumed to be a superposition
of: (i) an underlying slowly varying baseline trend θ(t), (ii) other more rapidly varying com-
ponents s(t) and (iii) noise. For example, in electrocardiogram data one wishes to separate a
train of transient waveforms s(t) reflecting the electrical activity of the heart from a nuisance
“baseline wander” θ(t) due to a patient’s respiration and other movements.

In practice, y(t) is observed at discrete time points t1, . . . , tn, and we model the vector of
samples yi = y(ti) as

y = θ + s + ε,

where θi = θ(ti), si = s(ti) and ε ∈ R
n is a vector of uncorrelated noise. For notational sim-

plicity, for the rest of the paper we assume that the time points take on the values ti = i, but
it is straightforward to generalize to an arbitrary grid of time points. In some applications the
slowly varying component θ is the signal of interest, and the transient component s is a vector
of nuisance parameters. In our air quality application, the roles of θ and s are reversed; s rep-
resents the signal of interest, and θ represents a baseline drift that obscures the identification
of the important transient events encoded in s.

To tackle demixing problems, we introduce a scalable baseline estimation framework by
building on �1-trend filtering, a relatively new nonparametric estimation framework. Our
contributions are three-fold:

• Kim et al. (2009) proposed using the check function as a possible extension of �1-trend
filtering but did not investigate it further. Here, we develop the basic �1-quantile-trend-
filtering framework and extend it to model multiple quantiles simultaneously with non-
crossing constraints to ensure validity and improve trend estimates.

• To reduce computation time and extend the method to long time series, we develop a
parallelizable ADMM algorithm. The algorithm proceeds by splitting the time domain into
overlapping windows, fitting the model separately for each of the windows and reconciling
estimates from the overlapping intervals.

• Finally, we propose a modified criterion for performing model selection.

In the rest of the paper, we detail our quantile trend filtering algorithms (Section 2) and
investigate how to choose the smoothing parameter (Section 3). We demonstrate through
simulation studies that our proposed methods provide better or comparable estimates of non-
parametric quantile trends than existing methods (Section 4). We further show that quantile
trend filtering is a more effective method of drift removal for low-cost air quality sensors and
results in improved signal classification compared to quantile smoothing splines (Section 5).
Finally, we discuss potential extensions of quantile trend filtering (Section 6).
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2. Baseline trend estimation.

2.1. Background. Kim et al. (2009) originally proposed �1-trend filtering to estimate
trends with piecewise polynomial functions, assuming that the observed time series y consists
of a trend θ plus uncorrelated noise ε, namely, y = θ + ε. The estimated trend is the solution
to the following convex optimization problem:

minimize
θ

1

2
‖y − θ‖2

2 + λ
∥∥D(k+1)θ

∥∥
1,

where λ is a nonnegative regularization parameter and the matrix D(k+1) ∈ R
(n−k−1)×n is

the discrete difference operator of order k + 1. To understand the purpose of penalizing the
1-norm of D(k+1)θ , consider the difference operator when k = 0.

D(1) =

⎛⎜⎜⎜⎝
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

⎞⎟⎟⎟⎠ .

Thus, ‖D(1)θ‖1 = ∑n−1
i=1 |θi −θi+1|, which is known as the total variation denoising penalty

in one dimension in the signal processing literature (Rudin, Osher and Fatemi (1992)) or
the fused lasso penalty in the statistics literature (Tibshirani et al. (2005)). The penalty
term incentivizes solutions which are piecewise constant. For k ≥ 1, the difference opera-
tor D(k+1) ∈ R

(n−k−1)×n is defined recursively as follows:

D(k+1) = D(1)D(k).

Penalizing the 1-norm of the vector D(k+1)θ produces estimates of θ that are piecewise poly-
nomials of order k.

Tibshirani (2014) proved that with a judicious choice of λ the trend filtering estimate con-
verges to the true underlying function at the minimax rate for functions whose kth derivative
is of bounded variation and showed that trend filtering is locally adaptive when the time se-
ries consists of only the trend and random noise, which is illustrated in Figure 2(a). As noted
earlier, in some applications, such as the air quality monitoring problem considered in this
paper, the data contain a rapidly varying signal in addition to the slowly varying trend and
noise. Figure 2(b) shows that standard trend filtering is not designed to distinguish between
the slowly varying trend and the rapidly varying signal, as the smooth component estimate θ
is biased toward the peaks of the transient components.

FIG. 2. Examples of trend filtering solutions (thick line) and 15th quantile trending filtering solution (thin line).
Standard trend filtering performs well in the no-signal case (a) but struggles to distinguish between the slowly
varying trend and the rapidly varying signal (b). The quantile trend is not affected by the signal and provides an
estimate of the baseline.
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To account for the presence of transient components in the observed time series y, we
propose quantile trend filtering Figure 2(b). To estimate the trend in the τ th quantile, we
solve the convex optimization problem

(1) minimize
θ

ρτ (y − θ) + λ
∥∥D(k+1)θ

∥∥
1,

where ρτ (r) is the check function

(2) ρτ (r) =
n∑

i=1

ri
(
τ − 1(ri < 0)

)
and 1(A) is 1 if its input A is true and 0 otherwise. Note that we do not explicitly model s.
Rather, we focus on estimating θ . We then estimate s + ε as the difference y − θ .

Before elaborating on how we compute our proposed �1-quantile trend filtering estimator,
we discuss similarities and differences between our proposed estimator and existing quantile
trend estimators.

2.1.1. Relationship to prior work. In this application, as well as those described in Ning,
Selesnick and Duval (2014), Marandi and Sabzpoushan (2015) and Pettersson et al. (2013),
the goal is to estimate the trend in the baseline, not the mean. We can define the trend in the
baseline as the trend in a low quantile of the data. A variety of methods for estimating quantile
trends have already been proposed. Koenker and Bassett (1978) were the first to propose
substituting the sum-of-squares term with the check function (2) to estimate a conditional
quantile instead of the conditional mean. Later, Koenker, Ng and Portnoy (1994) proposed
quantile trend filtering with k = 1 producing quantile trends that are piecewise linear, but
they did not consider extensions to higher order differences. Rather than using the �1-norm
to penalize the discrete differences, Nychka et al. (1995) used the smoothing spline penalty
based on the square of the �2-norm

n∑
i=1

ρτ

(
y(ti) − θ(ti)

) + λ

∫
θ ′′(t)2 dt,

where θ(t) is a smooth function of time and λ is a tuning parameter that controls the degree
of smoothing. Oh, Lee and Nychka (2011) proposed an algorithm for solving the quantile
smoothing spline problem by approximating the check function with a differentiable function.
Racine and Li (2017) propose a method for estimating quantile trends that does not employ
the check function. In their method the response is constrained to follow a location scale
model and the conditional quantiles are estimated by combining Gaussian quantile functions
with a kernel smoother and solving a local-linear least squares problem.

2.2. Quantile trend filtering. We combine the ideas of quantile regression and trend fil-
tering. For a single quantile level τ , the quantile trend filtering problem is given in (1). As
with classic quantile regression, the quantile trend filtering problem is a linear program which
can be solved by a number of methods. We want to estimate multiple quantiles simultane-
ously and to ensure that our quantile estimates are valid by enforcing the constraint that if
τ2 > τ1, then Q(τ2) ≥ Q(τ1), where Q is the quantile function of y. Even if a single quantile
is ultimately desired, ensuring noncrossing allows information from nearby quantiles to be
used to improve the estimates, as we will see in the peak detection experiments in Section 4.2.
Given quantiles τ1 < τ2 < · · · < τJ , the optimization problem becomes

(3) minimize
�∈C

J∑
j=1

[
ρτj

(y − θ j ) + λj

∥∥D(k+1)θ j

∥∥
1

]
,
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where � = (
θ1 θ2 · · · θJ

) ∈ R
n×J is a matrix whose j th column corresponds to the j th

quantile signal θ j and the set C = {� ∈ R
n×J : θij ≤ θij ′ for j ≤ j ′} encodes the noncrossing

quantile constraints. The additional noncrossing constraints are linear inequalities involving
the parameters; so the noncrossing quantile trends can still be estimated by a number of avail-
able linear programming solvers. We allow for the possibility that the degree of smoothness
in the trends varies by quantile by allowing the smoothing parameter to vary with quantile.
In the rest of this paper, we use k = 2 to produce piecewise quadratic polynomials and report
numerical results using the commercial solver Gurobi (Gurobi Optimization (2018)) and its R
package implementation. However, we could easily substitute a free solver such as the Rglpk
package by Theussl and Hornik (2017).

2.3. ADMM for big data. As the size of the data increases, computation time becomes
prohibitive. In our application to air quality sensor data, measurements are recorded every
second resulting in 86,400 observations per day. This number of observations is already too
large to use with currently available R packages used for estimating quantile trends (Nychka
et al. (2017), Koenker (2018)). To our knowledge, no one has addressed the problem of find-
ing smooth quantile trends of series that are too large to be processed simultaneously. We
propose a divide-and-conquer approach via an ADMM algorithm for solving large problems
in a piecewise fashion.

2.3.1. Formulation. To decrease computation time and extend our method to larger
problems, we divide our observed series yi with i = 1, . . . , n into W overlapping win-
dows of observations, defining the vector of sequential elements indexed from lw to uw as
y(w) = {ylw, ylw+1, . . . , yuw−1, yuw}, with

1 = l1 < l2 < u1 < l3 < u2 < l4 < u3 < · · · < uW = n.

We define nw = uw − lw + 1 so that y(w) ∈ R
nw . Figure 3 shows an example of 1200 obser-

vations being mapped into three equally sized overlapping windows of observations. While
the overlapping trend estimates between l2 and u2 do not vary dramatically, the difference is
more pronounced in the trend in the 5th quantile between l3 and u2. Thus, we need a way of
enforcing estimates to be identical in the overlapping regions.

Given quantiles τ1 < · · · < τJ , we introduce dummy variables θ
(w)
j ∈ R

nw as the value of
the τj th quantile trend in window w. We then “stitch” together the W quantile trend estimates

into consensus over the overlapping regions by introducing the constraint θ
(w)
ij = θi+lw−1,j

for i = 1, . . . , nw and for all j . Let �(w) be the matrix whose j th column is θ
(w)
j . Then, we

FIG. 3. Window boundaries and trends fit separately in each window. Each window’s trend estimate is plotted
in a different line type.
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FIG. 4. Trend fit with our ADMM algorithm with three windows (converged in seven iterations), compared to
trend from simultaneous fit.

can write these constraints more concisely as �(w) = U(w)�, where U(w) ∈ {0,1}nw×n is a
matrix that selects rows of � corresponding to the wth window, namely,

U(w) =

⎛⎜⎜⎝
eT
lw
...

eT
uw

⎞⎟⎟⎠ ,

where ei ∈ R
n denotes the ith standard basis vector. Furthermore, let ιC denote the indicator

function of the noncrossing quantile constraint, namely, ιC(�) is zero if � ∈ C and infinity
otherwise. Our windowed quantile trend optimization problem can then be written as

minimize
W∑

w=1

{
J∑

j=1

[
ρτj

(
y(w) − θ

(w)
j

) + λj

∥∥D(k+1)θ
(w)
j

∥∥
1

] + ιC
(
�(w))}

subject to �(w) = U(w)� for w = 1, . . . ,W.

(4)

The solution to (4) is not identical to the solution to (3) because of double counting of
the overlapping sections. The solutions are very close, however, and the differences are es-
sentially immaterial concerning downstream analysis. Figure 4 provides an illustration of the
trends estimated using multiple windows compared with the trends estimated using a single
window; estimates using multiple and single windows are nearly indistinguishable.

2.3.2. Algorithm. The ADMM algorithm (Gabay and Mercier (1975), Glowinski and
Marrocco (1975)) is described in greater detail by Boyd et al. (2011), but we briefly review
how it can be used to iteratively solve the following equality constrained optimization prob-
lem which is a more general form of (4):

minimize f (φ) + g(φ̃)

subject to Aφ + Bφ̃ = c.
(5)

Recall that finding the minimizer to an equality constrained optimization problem is equiva-
lent to the identifying the saddle point of the Lagrangian function associated with the problem
(5). ADMM seeks the saddle point of a related function called the augmented Lagrangian,

Lγ (φ, φ̃,ω) = f (φ) + g(φ̃) + 〈ω, c − Aφ − Bφ̃〉 + γ

2
‖c − Aφ − Bφ̃‖2

2,

where the dual variable ω is a vector of Lagrange multipliers and γ is a nonnegative tuning
parameter. When γ = 0, the augmented Lagrangian coincides with the ordinary Lagrangian.
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ADMM minimizes the augmented Lagrangian one block of variables at a time before
updating the dual variable ω. This yields the following sequence of updates at the (m + 1)th
ADMM iteration:

φm+1 = arg min
φ

Lγ (φ, φ̃m,ωm),

φ̃m+1 = arg min
φ̃

Lγ (φm+1, φ̃,ωm),

ωm+1 = ωm + γ (c − Aφm+1 − Bφ̃m+1).

(6)

Returning to our constrained windows problem given in (4), let �(w) denote the Lagrange
multiplier matrix for the wth consensus constraint, namely, �(w) = U(w)�, and let ω

(w)
j

denote its j th column.
The augmented Lagrangian is given by

L
(
�,

{
�(w)}, {

�(w)}) =
W∑

w=1

Lw

(
�,�(w),�(w)),

where

Lw

(
�,�(w),�(w)) =

J∑
j=1

[
ρτj

(
y(w) − θ

(w)
j

) + λj

∥∥D(k+1)θ
(w)
j

∥∥
1

+ (
θ

(w)
j − U(w)θ j

)T
ω

(w)
j + γ

2

∥∥θ (w)
j − U(w)θ j

∥∥2
2

]
+ ιC

(
�(w)),

and where γ is a positive tuning parameter.
The ADMM algorithm alternates between updating the consensus variable �, the window

variables {�(w)} and the Lagrange multipliers {�(w)}. At the (m+ 1)th iteration, we perform
the following sequence of updates:

�m+1 = arg min
�

L
(
�,

{
�(w)

m

}
,
{
�(w)

m

})
,

�
(w)
m+1 = arg min

{�(w)}
L

(
�m+1,

{
�(w)}, {

�(w)
m

})
.

Updating �. Some algebra shows that, defining iw = i − lw + 1, updating the consensus
variable step is computed as follows:

θij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2

(
θ

(w−1)
iw−1j

+ θ
(w)
iwj

) − 1

2γ

(
ω

(w−1)
iw−1j

+ ω
(w)
iwj

)
if lw ≤ i ≤ uw−1,

θ
(w)
iwj if uw−1 < i ≤ lw+1,

1

2

(
θ

(w)
iwj + θ

(w+1)
iw+1j

) − 1

2γ

(
ω

(w)
iwj + ω

(w+1)
iw+1j

)
if lw+1 < i ≤ uw.

(7)

The consensus update (7) is rather intuitive. We essentially average the trend esti-
mates in overlapping sections of the windows, subject to some adjustment by the La-
grange multipliers, and leave the trend estimates in nonoverlapping sections of the win-
dows untouched. For notational ease, we write the consensus update (7) compactly as
� = ψ({�(w)}, {�(w)}).



592 H. L. BRANTLEY, J. GUINNESS AND E. C. CHI

Algorithm 1 ADMM algorithm for quantile trend filtering with windows

Define D = D(k+1).
initialize:
for w = 1, . . . ,W do

�
(w)
0 ← arg min�(w)∈C

∑J
j=1 ρτj

(y(w) − θ
(w)
j ) + λ‖Dθ

(w)
j ‖1

�
(w)
0 ← 0

end for
m ← 0
repeat

�m+1 ← ψ({�(w)
m }, {�(w)

m })
for w = 1, . . . ,W do

�
(w)
m+1 ← arg min�(w) Lw(�m+1,�

(w),�(w)
m )

�
(w)
m+1 ← �(w)

m + γ (�
(w)
m+1 − U(w)�m+1)

end for
m ← m + 1

until convergence
return �m

Updating {�(w)}. We then estimate the trend separately in each window, which can be done
in parallel, while penalizing the differences in the overlapping pieces of the trends as outlined
in Algorithm 1. The use of the augmented Lagrangian converts the problem of solving a
potentially large linear program into solving a collection of smaller quadratic programs. The
gurobi R package (Gurobi Optimization (2018)) can solve quadratic programs in addition
to linear programs, but we can also use the free R package quadprog (Weingessel and
Turlach (2013)).

The windowed quantile trend filtering optimization problem (4) opens the door to signif-
icant computational gains over solving the original quantile trend filtering problem (3). The
quantile trend filtering problem for a single window is a linear program with N × J parame-
ters (number of observations by number of quantiles) which can be solved in computational
time proportional to (NJ )3. Consequently, solving a large problem using Algorithm 1 should
require less computational time than solving (3), even if the subproblems are solved sequen-
tially. We demonstrate the advantages of Algorithm 1 through timing experiments (Figure 5).
For each data size, 25 datasets were simulated using the peaks simulation design described be-
low. Trends for the fifth, tenth and fifteenth quantiles were fit simultaneously using λj = n/5
for all j . We use from one to four windows for each data size with an overlap of 500. Fig-
ure 5 shows that using four windows instead of one on data sizes of 55,000 provides a factor

FIG. 5. Timing experiments comparing quantile trend filtering with varying numbers of windows by data size.
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of 3 decrease in computation time. The timing experiments were conducted on an Intel Xeon
based Linux cluster using two processor cores.

We close the discussion of Algorithm 1 by addressing how to decide the number of win-
dows and their degree of overlap. As the windowed and original quantile trend filtering prob-
lems provide nearly indistinguishable estimates, a simple rule of thumb for choosing W is
to choose as few windows as one’s computational budget permits. Regarding the overlap be-
tween adjacent windows, the overlap is application dependent and should be larger than the
expected time duration of transient events.

Additional details regarding the convergence properties and stopping criteria for Algo-
rithm 1 are in Section 1 of the Supplementary Material (Brantley, Guinness and Chi (2020)).

3. Model selection. An important practical issue in baseline estimation is the choice of
the regularization parameter λ which controls the degree of smoothness in θ . In this section
we introduce four methods for choosing λ. The first is a validation based approach; the latter
three are based on information criteria. Each of the criteria we compare is calculated for a
single quantile (τj ). Rather than combine results over quantiles, we allow the value of λ to
vary by quantile, resulting in λ = {λ1, . . . , λJ }. To choose the best value for each λj , we first
estimate all of the quantile trends using λj = λ for all j over a grid of values for λ. We then
determine the λj that maximizes the criteria chosen evaluated using τj . Finally, we reestimate
the noncrossing trends with the optimal values for λj . A more thorough approach would
involve fitting the model on a J dimensional grid of values for λ, but this is computationally
infeasible.

3.1. Validation. Our method can easily handle missing data by defining the check loss
function to output 0 for missing values. Specifically, we use the following modified function
ρ̃τ in place of the ρτ function given in (2)

(8) ρ̃τ (r) = ∑
i /∈V

ri
(
τ − 1(ri < 0)

)
,

where V is a held-out validation subset of {1, . . . , n} and solve the problem

(9) minimize
�∈C

J∑
j=1

[
ρ̃τj

(y − θ j ) + λj

∥∥D(k+1)θ j

∥∥
1

]
.

The modified penalized negative log-likelihood in (9) corresponds to making a missing com-
pletely at random (MCAR) assumption and can be solved via Algorithm 1 with a trivial
modification to the quadratic program subproblems. Although it is normally considered a
strong assumption in general, the MCAR assumption does not present any disadvantages for
model selection purposes as the validation subset can be selected by taking a completely ran-
dom sample from among the observed entries yi . For each quantile level j , we select the λj

that minimizes the hold-out prediction error quantified by ρ̆τj
(y − θ̂ j (λj )), where θ̂ j (λj ) is

the solution to (9) and

ρ̆τ (r) = ∑
i∈V

ri
(
τ − 1(ri < 0)

)
.

3.2. Information criteria. Koenker, Ng and Portnoy (1994) addressed the choice of reg-
ularization parameter by proposing the Schwarz criterion for the selection of λ,

SIC(pλ, τj ) = log
[

1

n
ρτj

(y − θ j )

]
+ 1

2n
pλ logn,



594 H. L. BRANTLEY, J. GUINNESS AND E. C. CHI

where pλ = ∑
i 1(yi = θ̂i ) is the number of noninterpolated points which can be thought of

as active knots. Equivalently, pλ can be substituted with the number of nonzero components
in D(k+1)θ̂ j , which we denote ν and have found to be more numerically stable. The SIC is
based on the traditional Bayesian information criterion (BIC) which is given by

(10) BIC(ν) = −2 log
(
L{θ̂}) + ν logn,

where L is the likelihood function. If we take the approach used in Bayesian quantile regres-
sion (Yu and Moyeed (2001)) and view minimizing the check function as maximizing the
asymmetric Laplace likelihood

L(y | θ) =
[
τn(1 − τ)

σ

]n

exp
{
−ρτ

(
y − θ

σ

)}
,

we can compute the BIC as

BIC(ν, τj ) = 2

σ
ρτj

(y − θ̂ j ) + ν logn,

where θ̂ is the estimated trend and ν is the number of nonzero elements of D(k+1)θ̂ . We can
choose any σ > 0 and have found empirically that σ = 1−|1−2τ |

2 produces stable estimates.
A limitation of the BIC, however, is that it may be inconsistent in the high-dimensional

setting. This issue arises as a consequence of an implicit assumption in deriving the BIC that
all models under consideration are equally likely. Consequently, in the context of variable
selection methods, such as the lasso, models that include more covariates (up to half of all
possible covariates) will have a larger prior probability of being selected under the BIC cri-
terion. In the context of this work, using the BIC may have a tendency to favor the selection
of undersmoothed signals, as signals θ with more nonzero entries in the vector D(k+1)θ will
be assigned higher prior probabilities under the BIC.

To address this issue, Chen and Chen (2008) modified the prior probabilities to dampen
the prior weight on larger models, or in the context of this work, undersmoothed signals, and
proposed the extended Bayesian information criteria (eBIC), specifically designed for large
parameter spaces.

eBICγ (ν) = −2 log
(
L{θ̂}) + ν logn + 2γ log

(
P

ν

)
, γ ∈ [0,1],

where P is the total number of possible parameters and ν is the number of nonzero parameters
included in a given model. Chen and Chen (2008) prove that the eBIC is model selection
consistent under mild regularity conditions. We used the eBIC criterion with γ = 1 and P =
n − k − 1. We note that the eBIC could be used to select not only λ but also k by plugging in
for ν the expected degrees of freedom in the regular trend filtering model (Tibshirani (2014)).

We compare the performance of the SIC, scaled eBIC (with σ defined above) and valida-
tion methods in our simulation studies below.

4. Simulation studies. We conduct two simulation studies to compare the performance
of our quantile trend filtering method and regularization parameter selection criteria with pre-
viously published methods. The first study compares the method’s ability to estimate quan-
tiles when the observed series consists of a smooth trend plus independent error but does not
contain transient components. The second study is based on our application and compares the
method’s ability to estimate baseline trends and enable peak detection when the time series
contains a nonnegative, transient signal in addition to the trend and random component.

We compare three criteria for choosing the smoothing parameter for quantile trend fil-
tering: λ chosen using SIC (3.2) (detrendr_SIC), λ chosen using the validation method
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with the validation set consisting of every 5th observation (detrendr_valid) and λ cho-
sen using the proposed eBIC criterion (3.2) (detrendr_eBIC). For the second study we
also examine the effect of the noncrossing quantile constraint by estimating the quantile
trends separately and choosing λ using eBIC (detrendr_Xing). We do not include de-
trendr_Xing in the first study because the difference in quantiles is large enough that we
would not expect the noncrossing constraint to make a difference.

We also compare the performance of our quantile trend filtering method with three previ-
ously published methods, none of which guarantee non-crossing quantiles:

• npqw: The local linear quantile method (quantile-ll) described in Racine and Li (2017).
Code was obtained from the author.

• qsreg: Quantile smoothing splines described in Oh et al. (2004) and Nychka et al. (1995)
and implemented in the fields R package (Nychka et al. (2017)). The regularization
parameter was chosen using generalized cross-validation.

• rqss: Quantile trend filtering with k = 1 available in the quantreg package and de-
scribed in Koenker, Ng and Portnoy (1994). The regularization parameter is chosen using
a grid search and minimizing the SIC (3.2), as described in Koenker, Ng and Portnoy
(1994).

4.1. Estimating quantiles. To compare performance in estimating quantile trends in the
absence of a signal component, three simulation designs from Racine and Li (2017) were
considered. For all designs t = 1, . . . , n, x(t) = t/n and the response y was generated as

y(t) = sin
(
2πx(t)

) + ε
(
x(t)

)
.

The errors were simulated as independent draws from the following distributions:

• Gaussian: ε(x(t)) ∼ N(0, (1+x(t)2

4 )2).
• Beta: ε(x(t)) ∼ Beta(1,11 − 10x(t)).
• Mixed normal: ε(x(t)) is simulated from a mixture of N(−1,1) and N(1,1) with mixing

probability x(t).

The true quantile trends and example simulated data sets are shown in Figure 6. One hundred
datasets were generated for each design and size (300, 500 and 1000) considered for a total
of 900 datasets.

FIG. 6. Simulated data with true quantile trends.
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FIG. 7. RMSE by design, method, quantile and data size for designs without a transient component. Points and
error bars represent mean RMSE ± twice the standard error.

Quantile trends were estimated for τ = {0.05,0.25,0.5,0.75,0.95}, and the root mean

squared error was calculated as RMSE(τj ) =
√

1
n

∑n
i=1(θ̂ij − θij )2, where θij is the true value

of the τj th quantile of y at t = i. Figure 7 shows the mean RMSE plus or minus twice the
standard error for each method, quantile level and sample size (table available in Section 3
of the Supplementary Material (Brantley, Guinness and Chi (2020))). In all three designs
the proposed detrend methods are either better than or comparable to existing methods.
Overall, the detrend_eBIC performs best. In the mixed normal design, specifically, our
methods have lower RMSEs for the 5th and 95th quantiles. The npqw method performs
particularly poorly on the mixed normal design due to the violation of the assumption that
the data come from a scale-location model.

4.2. Peak detection. The second simulation design is closely motivated by our air quality
analysis problem. We assume that the measured data can be represented by

y(ti) = θ(ti) + s(ti) + εi,

where ti = i for i = 1, . . . , n, θ(t) is the drift component that varies smoothly over time,
s(t) is the true signal at time t and εi are i.i.d. errors distributed as N(0,0.252). We gen-
erate θ(t) using cubic natural spline basis functions with degrees of freedom sampled from
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FIG. 8. RMSE by method, quantile and data size for peaks design. Points and error bars represent mean RMSE
± twice the standard error.

a Poisson distribution with mean parameter equal to n/100 and coefficients drawn from an
exponential distribution with rate 1. The true signal function s(t) is assumed to be zero with
peaks generated using the Gaussian density function. The number of peaks is sampled from
a binomial distribution with size equal to n and probability equal to 0.005 with location pa-
rameters uniformly distributed between 1 and n − 1 and bandwidths uniformly distributed
between 2 and 12. The simulated peaks were multiplied by a factor that was randomly drawn
from a normal distribution with mean 20 and standard deviation of 4. An example dataset
with four signal peaks is shown in Figure 9. One hundred datasets were generated for each
n ∈ {500,1000,2000,4000}.

We compare the ability of the methods to estimate the true quantiles of y(ti) − s(ti)

for τ ∈ {0.01,0.05,0.1} and calculate the RMSE (Figure 8, table available in Section 3
of the Supplementary Material (Brantley, Guinness and Chi (2020))). In this simulation
study our proposed method detrend_eBIC method substantially outperforms the oth-
ers. The detrend_Xing method, which is the detrend_eBIC method fit without the
non-crossing constraints, performs similarly for larger quantiles and larger datasets. How-
ever, detrend_Xing produces significantly worse estimates for more extreme quantiles
(τ = 0.01) and smaller data sets (τ = 0.05 and n = 500). These results indicate that, even
when a single quantile is of interest, simultaneously fitting nearby quantiles and utilizing the
noncrossing constraint can improve estimates when data is sparse by using information from
nearby quantiles. The qsreg method is comparable to the detrend_eBIC method on the
larger datasets, but its performance deteriorates as the data size shrinks. The npqw and rqss
methods both perform poorly on this design.

While minimizing RMSE is desirable in general, in our application the primary metric of
success is accurately classifying observations yi into signal present or absent. To evaluate
the accuracy of our method compared to other methods, we define true signal as any time
point when the simulated peak value is greater than 0.5. We compare three different quan-
tiles for the baseline estimation and four different thresholds for classifying the signal after

FIG. 9. Example signal classification using threshold. Large hollow points indicate true signal (yi − θi > 0.5);
small filled points indicate observations classified as signal, that is, values greater than 1.2 after baseline removal
using detrend_eBIC.



598 H. L. BRANTLEY, J. GUINNESS AND E. C. CHI

FIG. 10. Class averaged accuracy by threshold, data size and method (1 is best 0.5 is worst).

subtracting the estimated baseline from the observations. Figure 9 illustrates the observations
classified as signal after subtracting the baseline trend compared to the “true signal.”

To compare the resulting signal classifications, we calculate the class averaged accuracy
(CAA), which is defined as

CAA = 1

2

[∑n
i=1 1[δi = 1 ∩ δ̂i = 1]∑n

i=1 1[δi = 1] +
∑n

i=1 1[δi = 0 ∩ δ̂i = 0]∑n
t=i=1 1[δi = 0]

]
,

where δi ∈ {0,1} is the vector of true signal classifications and δ̂i ∈ {0,1} is the vector of
estimated signal classifications, namely, δ̂i = 1(yi − θ̂i > h), where h is the chosen threshold.
We use this metric because our classes tend to be very imbalanced with many more zeros than
ones. The CAA metric should give a score close to 0.5 both for random guessing and also for
trivial classifiers such as δ̂i = 0 for all i.

Our detrend_eBIC method results in the largest CAA values (Figure 10) in addition
to the smallest RMSE values (Figure 8). Tables corresponding to Figure 10 and Figure 8 are
available in Section 3 of the Supplementary Material (Brantley, Guinness and Chi (2020)).
While qsreg was competitive with our method in some cases, in the majority of cases the
largest CAA values for each threshold were produced using the detrend_eBIC method
with the 1st or 5th quantiles.

5. Analysis of air quality data. The low-cost “SPod” air quality sensors output a time
series that includes a slowly varying baseline, the sensor response to pollutants and high
frequency random noise. These sensors record measurements every second and are used to
monitor pollutant concentrations at the perimeter of industrial facilities. Time points with
high concentrations are identified and compared with concurrent wind direction and speed.
Ideally, three colocated and time aligned sensors (as shown in Figure 1) responding to a
pollutant plume would result in the same signal classification after baseline trend removal
and proper threshold choice. We first illustrate the difference between our detrend_eBIC
method, hereafter referred to as detrendr, and qsreg using data from 13:10 to 15:10
from Figure 1 (Section 5.1). We then compare the methods on the complete day shown in
Figure 1, estimating trends by applying the qsreg method to two hour nonoverlapping win-
dows of the data and Algorithm 1 to the entire day. We focus on this day because data from
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three sensors was available. Finally, we examine an entire week of measurements from two
colocated sensors (Section 5.2).

5.1. Short series of air quality measurements. We compare our detrendr method with
the qsreg method on a two-hour subset of one-second SPod data (n = 7200) both to facili-
tate visualization and because the qsreg method cannot handle all 24 hours simultaneously.
We estimate the baseline trend using τ = {0.01,0.05,0.1} and compare three thresholds for
classifying the signal. The thresholds are calculated as the 90th, 95th and 99th quantiles of
the detrended series for each SPod. If there is signal present in the dataset, values above these
thresholds should occur simultaneously on all three SPods. We do not use class-averaged
accuracy to compare the signal classifications because we do not have a reference value to
define as the “true” signal. Instead, we compute the variation of information (VI) which com-
pares the similarity between two classifications. Given the signal classifications for SPods a
and b, δ

(a)
i ∈ {0,1} and δ

(b)
i ∈ {0,1}, for i ∈ {1, . . . , n} the VI is defined as

rjk = 1

n

∑
i

1
(
δ
(a)
i = j ∩ δ

(b)
i = k

)
,

VI(a, b) = −∑
j,k

rjk

[
log

(
rjk

1
n

∑
i 1(δ

(a)
i = j)

)
+ log

(
rjk

1
n

∑
i 1(δ

(b)
i = k)

)]
,

where (j, k) ∈ {(0,0), (0,1), (1,0), (1,1)}. The VI is a distance metric for measuring sim-
ilarity of classifications and will be 0 if the classifications are identical and increase as the
classifications become more different.

Figure 11 shows the estimated 5th quantile trends from each method for each SPod. The
detrendrmethod results in a smoother baseline estimate while the qsregmethod absorbs
more of the peaks obscuring some of the signal. Figure 12 shows the series after subtracting
the detrendr estimate of the 5th quantile and classifying the signal using the 95th quantile
of the detrended data. The 90th and 99th thresholds are also shown for comparison as dotted
and dashed lines, respectively. The largest peaks at 13:10 are easily identified as signal, but
good baseline estimates also enable proper classification of the smaller peaks like the one at

FIG. 11. Estimated 5th quantile trends for SPods a, b and c, using qsreg and detrendr. SPod c contains
some missing values that were interpolated before the trends were estimated. qsreg is more influenced by the
signal component apparent on all nodes resulting in under-smoothing.
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FIG. 12. Rugplot showing locations of signal after baseline removal using the detrendr estimate of 5th
quantile. Horizontal dashed lines represent the thresholds calculated using the 90th, 95th and 99th quantiles of
the detrended data. The 95th quantile (solid line) was used to classify the signal shown as vertical lines at the
bottom of the plot.

12:30. The under-smoothing of the qsregmethod results in less similar signal classifications
and higher VI values for the 90th and 95th quantile thresholds (Figure 13). However, when the
99th threshold is used, only the highest observations are classified as signal, and the baseline
estimation method is not as important (Figure 13).

5.2. Long series of air quality measurements. Algorithm 1 was used to remove the base-
line drift from the full day of data (Figure 1) consisting of 86,400 observations per SPod and
compared to the series detrended using the qsreg trends estimated using nonoverlapping
two hour windows. As in the shorter illustration, the detrendr method results in generally
lower VI scores than the qsreg method (Figure 14). The detrendr method also results
in better correlation in the detrended series, as is illustrated in (Figure 15). The Spearman
correlation coefficients for SPods a and b, SPods a and c and SPods b and c after removing

FIG. 13. Variation of information between sensors by method (color and size), quantile (columns) and threshold
(shape) for two hour time period.
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FIG. 14. Variation of information between sensors by method (color and size), quantile (columns) and threshold
(shape) for full day.

the 5th quantile trend using detrendr were 0.37, 0.75 and 0.43, compared with 0.07, 0.24
and 0.16 using qsreg. The noise variance was higher for SPod b than for SPods a and c,
resulting in lower correlation and higher VI values for the ab and bc metrics compared with
ac.

Finally, we estimated the quantile trends for seven days of measurements of two colo-
cated SPods. Figure 16 demonstrates the improvement in classification similarity when using
detrendr. Each point represents a day of measurements and all points that fall below the
dashed line have more similar classifications using detrendr compared to qsreg. The
improvement of detrendr over qsreg is more severe at lower thresholds. This indicates
that detrendr gives greater agreement on signal classification when the methods are tuned
to deliver positive classifications more frequently.

6. Conclusion and discussion. We have expanded the quantile trend filtering method by
implementing a noncrossing constraint, introducing a new algorithm for processing big time
series data and proposing a modified criteria for smoothing parameter selection. Furthermore,
we have demonstrated the utility of quantile trend filtering in both simulations and applied
settings. Our ADMM algorithm for large series both reduces the computing time and allows
trends to be estimated on series that cannot be estimated simultaneously, while our scaled
extended BIC criterion was shown to provide better estimates of quantile trends in series
with and without a signal component.

FIG. 15. SPod a versus SPod c before and after detrending with qsreg and detrendr.
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FIG. 16. Variation of information (VI) for detrendr and qsreg by quantile trend and threshold. Each point
represents a full day of data. The dashed line represents y = x. In most cases detrendr results in a lower VI
than qsreg.

In our application to low-cost air quality sensor data, we have shown that the baseline drift
in low-cost air quality sensors can be removed through estimating quantile trends, but the
data size was too large for existing methods to be computationally feasible. While qsreg
cannot feasibly handle more than a few hours data, our new methods were able to process
24 hours simultaneously and deliver signal classifications that were more consistent between
the two sensors for a week of data (168 hours). In the future, quantile trend filtering could be
extended to observations measured at nonuniform spacing by incorporating the distance in
covariate spacing into the differencing matrix. It could also be extended to estimate smooth
spatial trends by a similar adjustment to the differencing matrix based on spatial distances
between observations.

While we focus on obtaining a quantile trend filtering estimator by solving an optimization
problem in this work, another potential extension would be to investigate a fully Bayesian
formulation of quantile trend filtering. Faulkner and Minin (2018) proposed several fully
Bayesian variations of the trend filter by utilizing Laplace and Horseshoe shrinkage priors
on the kth-order differences in values of the unknown target function. They used a Gaussian
likelihood for the data corresponding to the squared loss used by Kim et al. (2009). A fully
Bayesian variation of the quantile trend filter could be implemented by building on the work
of Faulkner and Minin (2018) by substituting an asymmetric Laplace likelihood for the Gaus-
sian likelihood.

Finally, we note that quantile regression has often been used to perform robust estimation
in the presence of outliers. Indeed, one could pose our peak detection problem as an outlier
detection problem where outliers could only occur as extreme positive and sudden shifts from
a smooth and slowly varying baseline. Consequently, an important potential use case of our
quantile trend filtering method is in robust smoothing of time series data. We leave this and
the other extensions discussed above for future work.

An R-package detrendr containing code to perform the methods described in the article
is available in the Supplementary Material (Brantley, Guinness and Chi (2020)) and at https:
//github.com/halleybrantley/detrendr.
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SUPPLEMENTARY MATERIAL

Supplement A: Algorithm details and simulation tables (DOI: 10.1214/19-AOAS1318
SUPPA; .pdf). The supplementary materials contain additional details on the ADMM algo-
rithm as well as tables summarizing the results plotted in Figures 7, 8, and 10.

Supplement B: detrendr R package (DOI: 10.1214/19-AOAS1318SUPPB; .zip). R-
package detrendr containing code to perform the methods described in the article (GNU
zipped tar file).
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