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ESTIMATING A COMMON PERIOD FOR A SET OF
IRREGULARLY SAMPLED FUNCTIONS WITH APPLICATIONS

TO PERIODIC VARIABLE STAR DATA1
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We consider the problem of estimating a common period for a set of
functions sampled at irregular intervals. The motivating problem arises in as-
tronomy, where the functions represent a star’s observed brightness over time
through different photometric filters. While current methods perform well
when the brightness is sampled densely enough in at least one filter, they
break down when no brightness function is densely sampled. In this paper we
introduce two new methods for period estimation in this important latter case.
The first, multiband generalized Lomb–Scargle (MGLS), extends the fre-
quently used Lomb–Scargle method to naïvely combine information across
filters. The second, penalized generalized Lomb–Scargle (PGLS), builds on
MGLS by more intelligently borrowing strength across filters. Specifically,
we incorporate constraints on the phases and amplitudes across the differ-
ent functions using a nonconvex penalized likelihood function. We develop a
fast algorithm to optimize the penalized likelihood that combines block coor-
dinate descent with the majorization–minimization (MM) principle. We test
and validate our methods on synthetic and real astronomy data. Both PGLS
and MGLS improve period estimation accuracy over current methods based
on using a single function; moreover, PGLS outperforms MGLS and other
leading methods when the functions are sparsely sampled.

1. Introduction. Periodic variable stars play an important role in several ar-
eas of modern astronomy, including extragalactic distance determinations and es-
timation of the Hubble constant [Riess et al. (2011), Shappee and Stanek (2011)].
To effectively use periodic variables, astronomers need accurate period estimates.
For instance, extragalactic distance determination is performed by regressing the
luminosity of a set of periodic variables stars on their log period. Incorrect period
estimates introduce error into the regression parameter estimates, which in turn
introduce error into the galactic distance estimate.

Astronomers estimate periods using the light curve of a star. A light curve is
a set of brightness measurements of a star taken over time. Many astronomical
surveys measure the brightness of stars in several photometric filters, or bands.
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Multiband data is useful because differences in brightness across bands is a strong
indicator of stellar class. Figure 1(a) displays the light curve of the periodic vari-
able OGLE-LMC-T2CEP-041 observed in the I band (×) and V band (◦) by the
Optical Gravitational Lensing Experiment (OGLE) [Udalski et al. (2008)]. This
star has been observed 702 times in the I band and 76 times in the V band over the
course of roughly 4000 days. The intervals between brightness measurements are
irregular, and the star is observed at different times in the different bands. This is
typical for light curves. Many stars are behind the sun for part of the year, lead-
ing to months-long gaps between observations. Additionally, weather can disrupt
planned observation times. The vertical bars around each point are two-standard
deviation uncertainty measurements on brightness. There are several sources of
uncertainty in each magnitude measurement. These include variation in the num-
ber of photons captured by the detector in an interval of given length (even for a
nominally constant star), background light (i.e., photons) captured by the detector,
which must be estimated and removed to obtain an unbiased estimate of a star’s
brightness, and detector noise. Astronomers attempt to account for all of these
sources and typically report a standard deviation along with a brightness measure-
ment. The size of the error bars relative to the amount of variation in brightness
demonstrates that OGLE-LMC-T2CEP-041 is a variable star. Stellar brightness is
typically measured on the magnitude scale which is inversely proportional to log
flux. Thus, brighter measurements are lower magnitude. In Figure 1(a) brighter
measurements, and hence lower magnitudes, are higher on the plot, hence the in-
verted y-axis. OGLE-LMC-T2CEP-041 is a periodic variable star because its
brightness variation follows a periodic pattern. Using the data in Figure 1(a), a pe-
riod of approximately 2.48 days can be determined with a period estimation al-
gorithm such as generalized Lomb–Scargle (see Section 3 for a description). The
pattern of variation in OGLE-LMC-T2CEP-041 can be observed by plotting the
brightness of the star versus phase (time modulo period). This is known as the
folded or phased light curve. Figure 1(b) displays the folded light curve in each
band. Accurate estimation of OGLE-LMC-T2CEP-041’s period is fairly easy be-
cause the star has been observed hundreds of times in the I band. Surveys do not
always collect enough measurements per band to make period determination easy.
This is because observing time is limited and other scientific goals (galaxy evolu-
tion, weak gravitational lensing, large scale structure of the universe) may require
observing a large area of the sky, thus limiting the number of times a single ob-
ject can be repeatedly observed. For example, in Stripe 82, the Sloan Digital Sky
Survey I (SDSS-I) collected light curves for ∼700,000 stars in five bands with a
median of 10 observations per band. Sesar et al. (2007) identified several hundred
of these stars as candidate periodic variables belonging to the class RR Lyrae but
could not estimate periods due to the lack of available methodology for estimating
periods with poorly sampled light curves. Later, the Sloan Digital Sky Survey II
(SDSS-II) roughly tripled the number of observations per light curve to a median
of 30 observations per band. In a follow-up study, Sesar et al. (2010) used this
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FIG. 1. (a) The light curve of the star OGLE-LMC-T2CEP-041 in the I band (×) and V band (◦).
Given these measurements, astronomers seek to estimate the common period of the I and V bands.
Magnitude is inversely proportional to brightness, so smaller magnitudes, representing brighter ob-
servations, are plotted higher on the plot. (b) If one is able to estimate the period (≈2.48) days from
the data in (a), then the pattern of brightness variation becomes apparent when brightness (i.e., mag-
nitude) is plotted against the time modulo period. This is known as the folded light curve. Note, the
phase of maximum brightness in the I band and V band are similar. (c) The same light curve as in
(a) downsampled to 10 observations in the I and V bands. For data of the quality in (a), period esti-
mation is easy because the star has been observed many times in the I and V bands. Period estimation
is more difficult for data of the quality in (c), and common period estimation methods may fail. In this
work we propose using correlations between the phases of maximum brightness in different bands in
order to improve period estimation.
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expanded set of data to estimate periods. More recently, the PanSTARRS1 sur-
vey has collected five band variable star data with a median of 4 observations per
band [Schlafly et al. (2012)]. In this article, we develop methology for estimating
periods with this quality of data.

To give an idea of the challenge, Figure 1(c) shows the light curve from Fig-
ure 1(a) downsampled to 10 observations per band. In addition to enabling period
recovery for already collected poorly sampled light curves, the existence of pe-
riod estimation algorithm for poorly sampled data has implications for upcoming
astronomical survey design. For future surveys, astronomers will make decisions
such as follows: take n images per band of one field (area of the sky) or take n/2
images per band of two fields. With accurate algorithms for period estimation with
n/2 observations per band, the second observing strategy will enable astronomers
to collect twice as many objects and still determine periods.

Period estimation is challenging when stars are poorly observed in multiple
bands because one must model brightness variation for several functions, thus us-
ing many degrees of freedom. For example, consider a model with r parameters to
describe the shape of the light curve in each band. If one collects data in 5 bands
with 10 observations per band, then the model will have 5r + 1 parameters (1 for
the period), constrained by a total of 50 observations. In contrast with 50 observa-
tions all taken in a single band, there are only r + 1 parameters to fit. Light curve
shapes across different bands, however, are not independent. For example, periodic
variables typically reach their peak brightness at similar points in phase space in
each band [see Figure 1(b)]. Enforcing such physical constraints in models may
improve the accuracy of period estimation procedures by reducing the effective
degrees of freedom that must be used to fit the curves.

We now present an illustrative example that confirms this intuition and moti-
vates our strategy for borrowing strength across multiple photometric bands. As a
test, we use a sample of well-observed (≥50 measurements/band) periodic vari-
able stars observed in the I and V bands collected by the OGLE survey [Udalski
et al. (2008)]. We estimate their periods using a simple multiband extension of
generalized Lomb–Scargle (MGLS). MGLS models the brightness variation as
sinusoidal and finds the best fitting period (see Section 2.3 for details). These pe-
riods are nearly correct for every star because the light curves are well observed.
Figure 2(a) shows the MGLS phase estimates in the I and V bands. Phase is the
location (here measured on a [−π,π) scale) in the phased light curve where the
brightness reaches a maximum.2 From the plot, it is evident that there is a strong
correlation between the I and V band phases. This is also evident for OGLE-LMC-
T2CEP-041 in Figure 1(b), where both I and V bands peak near phase −π/3. The
outliers near (−π,π) and (π,−π) in Figure 2(a) are due to the fact that phases

2A light curve with a phase of −π is brightest at time modulo period equals 0. A light curve with
a phase of 0 is brightest at time modulo period equals half the period.
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FIG. 2. (a) Phase estimates using GLS period estimates on light curves with many observations
in both I and V bands. (b) When the light curves are downsampled to 10 observations per band,
GLS produces phase estimates that are only weakly correlated. Furthermore, 51.5% of periods are
estimated incorrectly (×). (c) Using the same data as in Figure 2(b), PGLS produces more correlated
phase estimates. Incorrect period estimates drop to 47%.

of −π and π represent identical functions. Also note that the V band phase tends
to be slightly larger than the I band phase (points tend to be above the identity
line). This is due to the fact that for this type of periodic variable peak brightness
in the V band typically occurs slightly before peak brightness in the I band. Now
consider downsampling these light curves to 10 measurements in both the I and
V bands. The data now resemble the quality, in terms of number of photometric
measurements per band, of SDSS-I. We again apply the MGLS algorithm and plot
the phase estimates in Figure 2(b). The points are marked by whether the period
is estimated to within 1% of its true value. By this measure, 51.5% of the peri-
ods are estimated incorrectly. Note that the phase estimates do not appear strongly
correlated in the two bands. The MGLS algorithm does not force the phases to
be similar in different bands. An algorithm that uses the known phase correlations
may be able to estimate periods more accurately. In Figure 2(c) we plot the phase
estimates using a modified GLS algorithm, termed Penalized GLS (PGLS), that
we develop in Section 3. PGLS enforces phases constraints across the bands using
a penalized likelihood. The constraints shrink phases toward each other, resulting
in tightly correlated phase estimates that are physically realistic. Incorrect period
estimates have fallen to 47% from 51.5%. The remainder of this paper is structured
as follows: In Section 2 we discuss additional astronomy background and existing
methodology for estimating periods of variable stars. In Section 3 we introduce a
penalized likelihood method for estimating periods that uses known correlations
in phase and amplitude across bands. In Section 4 we develop a fast algorithm,
PGLS, to maximize the likelihood by combining block coordinate descent with
the majorization–minimization (MM) principle. In Section 5 we discuss selection
of tuning parameters. We apply PGLS to simulated and real data in Section 6. We
finish with conclusions in Section 7.
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2. Astronomy background and existing period estimation methods.

2.1. Photometry. Telescopes take images of the sky using a particular filter,
also known as a passband or band. From these images, stars are identified and their
brightnesses estimated. Let mbi be the brightness of a star observed in band b for an
image taken at time tbi . The standard unit of brightness in astronomy is magnitude.
Magnitude is a negative log transform of luminosity, thus brighter objects have
lower magnitudes. An uncertainty on mbi , denoted σbi , is also typically recorded.
Often the observed magnitude mbi is modeled as being some true, unobserved
magnitude plus Gaussian error with standard deviation σbi . Using this model, the
light curve for a particular star is {{(tbi ,mbi, σbi)}nb

i=1}Bb=1, where B is the number
of bands and nb is the number of images of the star taken in band b. Modern
astronomy surveys routinely collect millions of light curves.

2.2. Identifying variable stars. Before period estimation is performed, as-
tronomers typically separate the nonvariable and variable stars in a survey using
variability detection methods. Simple methods involve computing the difference
between the magnitudes and the mean magnitude for each band. Large absolute
differences suggest that the star is a variable. This approach does not use any
time information. The Welch–Stetson statistics developed in Welch and Stetson
(1993) and Stetson (1996) use time correlations in residuals. These statistics are
designed for multiband data where images are taken nearly simultaneously in dif-
ferent bands. While nonvariables play an important role in many areas of astron-
omy, this work is devoted to the study of period estimation for variable stars.

2.3. Period estimation. The set of variable stars is further sifted to identify
and characterize the periodic variables. Astronomers and statisticians have devel-
oped many methods for estimating periods. Nearly all of the existing methodology
has been designed for single band data observed many times. We refer interested
readers to Reimann (1994), Chapter 3.1, and Graham et al. (2013) for reviews of
existing methodology. Here we describe a pair of approaches, known in astronomy
as Lomb–Scargle (LS) and generalized Lomb–Scargle (GLS). The multiband pe-
riod estimation method developed in this article is an extension of GLS. LS and
GLS both model the magnitudes as a sinusoid plus measurement error. The pe-
riod estimate is the period that maximizes the likelihood. With LS the magnitudes
are scaled to mean 0, and a sinusoid without an intercept is fit to the data [Lomb
(1976), Scargle (1982)]. Zechmeister and Kürster (2009) proposed a modification
of LS, GLS, in which the magnitudes are not normalized to mean 0 and an intercept
term is used in the sine fit. Specifically, let

mi = β0 + a sin(ωti + ρ) + εi,

where β0, a, ρ and ω are the magnitude offset, amplitude, phase and frequency
of the star. The measurement error εi ∼ N(0, σ 2

i ) is assumed to be independent



ESTIMATING A COMMON PERIOD 171

across i. Although the model is nonlinear in the frequency ω, one can nonetheless
compute maximum likelihood estimates by selecting a grid � of possible frequen-
cies ω and solving a linear regression at each frequency in the grid. We describe
this procedure in Section 4.1. The sinusoidal model is an approximation, as most
light curves exhibit at least some degree of nonsinusoidal variation. However, LS
and GLS have proven to be effective period estimation algorithms in many settings.
Reimann (1994) (Section 3.3) found that for periodic light curves with unimodal
behavior over phase, LS estimated frequency as well as more sophisticated ap-
proaches, including sinusoidal models with harmonic terms, periodic cubic splines
and SuperSmoother.3 In a study of periodic variables with a variety of light curve
shapes, Dubath et al. (2011) found that GLS outperformed competing period es-
timation methods. Part of the success of LS and GLS is due to being more com-
putationally efficient than many alternatives. LS and GLS have been used in many
recent studies of periodic variable stars [Debosscher et al. (2009), Richards et al.
(2011), Suveges et al. (2012), Watkins et al. (2009)].

2.4. Multiband period estimation methods. While many period estimation
procedures exist for single band data, few methods have been developed for multi-
band light curves. With multiband data, practitioners typically use single band pe-
riod estimation procedures individually on each band and then combine or choose
between the single band estimates based on some criteria. For example, Watkins
et al. (2009) used the LS sinusoid model run separately on g and r band light
curves to select candidate periods that were then analyzed using a string-length
period algorithm to determine a single best estimate. Suveges et al. (2012) applied
GLS to multiband data by first combining the bands together using a robust version
of principal components analysis. Their method assumes that brightness measure-
ments in the different bands are taken at the same time, limiting its applicability.
The two methods we introduce below do not require simultaneous measurements.

3. A penalized maximum likelihood multiband period estimator.

3.1. Multiband Lomb Scargle. We begin by proposing a simple generalization
of the single-band GLS algorithm of Zechmeister and Kürster (2009) to multiple
bands. We call this first method MGLS for multiband GLS. To the best of our
knowledge, MGLS is the first work to formally define GLS for multiple bands.
Throughout, scalars are denoted by lowercase letters (u), vectors by boldface low-
ercase letters (u), and matrices by boldface capital letters (U). We denote the stan-
dard dot product between vectors a and b by 〈a,b〉 = aTb. We denote the vector
of all ones with 1. Let D = {{(tbi,mbi, σbi)}nb

i=1}Bb=1 denote the data, namely, the
triples of times, magnitudes and magnitude error measurements in the B bands.

3See Friedman (1984) for a description of SuperSmoother.
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Let ω be the frequency that is shared across all bands. Brightness at time t in band
b is modeled using the sine curve

μb(t) = ab sin(ωt + ρb) + β0b,

where ab, ρb and β0b are the amplitude, phase and magnitude offset for band b.
For notational efficiency we refer to vectors of amplitudes, phases and magnitude
offsets as

a = (a1, . . . , aB)T,

ρ = (ρ1, . . . , ρB)T,

β0 = (β01, . . . , β0B)T.

We bundle these parameters into the vector θ = (ω,aT,ρT,βT
0) ∈ R

3B+1. The ob-
served magnitude mbi is a noisy measurement of μb at time tbi , namely,

mbi = μb(tbi) + εbi,

where εbi ∼ N(0, σ 2
bi). Assuming mutual independence of all εbi , the likelihood

function becomes

p(D|θ) =
B∏

b=1

nb∏
i=1

1√
2πσbi

e−[mbi−μb(tbi )]2/(2σ 2
bi ).(3.1)

To ensure identifiability of this model, we require that the elements ab be non-
negative and the elements ρb reside in the interval [0, π). To keep our notation
readable, we do not explicitly write out these constraints in the rest of the paper.
The negative log likelihood (NLL) of p(D|θ) is

	(ω,β0,a,ρ|D) = 1

2

B∑
b=1

nb∑
i=1

(
mbi − Ab sin(tbiω + ρb) − βb0

σbi

)2

.(3.2)

The solution to the NLL at frequency ω is

	(ω) = min
a,ρ,β0

	(ω,β0,a,ρ),

and the maximum likelihood estimate for ω is

ω̂ = argmin
ω∈�

	(ω).(3.3)

Equation (3.3) is a straightforward generalization of the GLS algorithm to multiple
bands. We discuss the computation of ω̂ in Section 4.1.
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3.2. Penalty terms. We now propose a generalization of GLS that penalizes
unlikely values of a and ρ. We call this method PGLS for penalized generalized
Lomb–Scargle. The penalized negative log likelihood (PNLL) is

f (ω,β0,a,ρ|D;γ1, γ2) = 	(ω,β0,a,ρ|D) + γ1J1(a) + γ2J2(ρ).(3.4)

The minimal PNLL at frequency ω is

f (ω|D;γ1, γ2) = min
β0,a,ρ

f (ω,β0,a,ρ|D;γ1, γ2),(3.5)

and the PGLS frequency estimate is

ω̂(D;γ1, γ2) = argmin
ω∈�

f (ω|D;γ1, γ2).(3.6)

We will often suppress dependence of f and ω̂ on D, γ1 and γ2 when these quan-
tities are fixed. The penalties J1 and J2 [see (3.7) and (3.8)] are chosen to be large
for values of a and ρ that are unlikely. We motivate the form of J1 and J2 using
periodic variable star data from the OGLE survey [Udalski et al. (2008)]. We fit
MGLS to 100 well-observed stars in the I and V bands for four classes of periodic
variables (Type I Cepheid, Type II Cepheid, RR Lyrae AB, RR Lyrae C). Since
these stars have been well observed in the I and V bands (at least 50 measure-
ments/band), the parameter estimates should be quite accurate. In Figure 3 we plot
the maximum likelihood estimates of amplitude in the I and V bands for the four
classes of periodic variables. In each plot, the line is chosen to pass through (0,0)

and the mean of the amplitudes in each band. Amplitudes cluster around these

FIG. 3. Amplitude correlations in the I and V bands for classes of periodic variable stars.
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FIG. 4. Phase correlations in the I and V bands for four classes of periodic variable stars.

lines. The slope of these lines is greater for the RR Lyrae classes than for either
Cepheid class. Let ã be the vector of mean amplitudes in each band. We propose
penalizing the amplitude vector with

J1(a) = 1
2aT(

I − ããT)
a = 1

2

∥∥a − ãTaã
∥∥2

2,(3.7)

where ãTã = 1. In words, J1(a) is half the squared norm of the amplitude compo-
nent orthogonal to ã. In Figure 4 we plot the maximum likelihood estimates for I
band and V band phases by class along with a line with slope 1 and y-intercept
of 0. For each class, phase estimates usually are close to the vector 1, implying that
the light curve reaches maximum brightness in I and V bands at approximately the
same point in phase space. Since a phase of −π and a phase of π are the same, the
light curves represented by points in the upper left [near (−π,π)] and lower right
[near (π,−π)] in each plot are not actually outliers.4 Based on these plots, ρ is
penalized with

J2(ρ) = 1

2
ρT

(
I − 1

B
11T

)
ρ = 1

2

∥∥∥∥ρ − 1Tρ

1T1
1
∥∥∥∥2

2
.(3.8)

In words, J2(ρ) is half the squared norm of the component of ρ that is orthogonal
to 1. The parameter γ2 controls how strongly the phase estimates are forced toward

4Note that for the Type I and Type II Cepheid classes, the V band phase is slightly larger on average
than the I band phase because the peak brightness occurs earlier in V band than I band. This has been
documented in the astronomy literature; see Figure 5 of Freedman (1988).
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a multiple of the vector 1. This parameter may be set based on the type of periodic
variable. For example, if a practitioner is attempting to find periods for a class
of variable stars where the phases in different bands are expected to be nearly
identical, then γ2 may be made very large. In contrast, if only a weak relationship
is expected, then γ2 may be made much smaller. In Figure 4, there is roughly the
same scatter for all classes, so a single γ2 may be appropriate. We discuss selection
of γ2 further in Section 5. Note that, with ã = (B−1/2, . . . ,B−1/2), J1 has the same
form as J2. In the remainder of this section, we discuss the existing literature on
penalties similar to J1 and J2. To the best of our knowledge, there is no existing
work on using these penalties for period estimation. An algorithm for computing ω̂

in (3.6) is discussed in Section 4. Methodology for choosing γ1 and γ2 is discussed
in Section 5.

3.3. Discussion of the penalties. Both penalties in (3.7) and (3.8) can be writ-
ten generically as J (ν) = νT�ν where � is positive semidefinite. When � is the
identity matrix, we recover the classic ridge penalty [Hoerl and Kennard (1970)].
When � encodes a discrete differential operator, we recover the quadratic penalty
broadly used in smoothing splines, reproducing kernel Hilbert spaces and func-
tional data analysis [Ramsay (2004)]. In fact, such quadratic penalties have gar-
nered attention in functional principal components analysis [Allen (2013), Allen,
Grosenick and Taylor (2014), Huang, Shen and Buja (2009), Tian et al. (2012)]
when there is a natural “adjacency” among parameters as well as a prior belief
that variation among adjacent parameters should be smooth. Here we propose us-
ing the discrete first order differential operator that corresponds to taking � to
be the graph Laplacian [Chung (1997)] of a completely connected network of B

nodes where each node corresponds to a variable (amplitude or phase) of a given
band. The graph Laplacian has been previously employed to enforce smoothness
of regression parameters corresponding to neighbors in a gene network [Li and Li
(2008)]. It has also been applied in enforcing smoothness in spatial parameters for
estimating allele frequencies across populations in neighboring geographic regions
[Gelfand and Vounatsou (2003), Rañola, Novembre and Lange (2014)].

3.4. Bayesian MAP interpretation of penalties. The penalized likelihood es-
timator for ω specified by (3.6) may be interpreted as a Bayesian MAP estimator
with improper prior distributions. Let p(D|θ) be the sinusoidal likelihood from
equation (3.1) and p(θ) be some prior. Recall that θ = (ω,aT,ρT,βT

0) ∈ R
3B+1.

Then the posterior is p(θ |D) ∝ p(D|θ)p(θ). The maximum a posterior estimator
for ω on the space � (without marginalizing across other parameters) is

ω̂ = argmax
ω∈�

max
a,ρ,β0

p(D|θ)p(θ)

(3.9)
= argmin

ω∈�

min
a,ρ,β0

− logp(D|θ) − logp(θ).
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The ω̂ in equation (3.9) matches the PGLS estimate from Section 3.2 [equation
(3.6)] if the prior satisfies

− logp(θ) = γ1J1(a) + γ2J2(ρ).

Thus,

p(θ) = e−1/2aTγ1(I−ããT)ae−1/2ρTγ2(I−(1/B)11T)ρ .

The priors on a and ρ have the form of mean 0 Gaussian densities, but the precision
matrices γ1(I − ããT) and γ2(I − (1/B)11T) are not invertible. Further, the prior on
β0 is uniform on R

B and thus improper. While the prior p(θ) does not explicitly
depend on ω, the fact that the minimization is done for ω ∈ � puts a uniform prior
on ω.

4. Minimizing the penalized likelihood. In this section we discuss the com-
putation of the PGLS frequency estimate ω̂ in (3.6). The algorithm consists of the
following:

1. Choosing a grid of possible frequencies �.
2. Minimizing the negative log likelihood (NLL) for every frequency in the

grid.
3. Minimizing the penalized negative log likelihood (PNLL) using a block co-

ordinate descent algorithm for a sufficient subset of the frequencies in the grid.

In Section 4.1 we discuss steps 1 and 2. The frequency that minimizes the NLL
is the MGLS frequency. In Section 4.2 we show that in order to obtain the PGLS
frequency estimate, it is necessary only to minimize the PNLL on a subset of �.
In Section 4.3 we discuss step 3.

4.1. Choice of frequency grid and minimizing the negative log likelihood. The
grid of frequencies � is typically chosen on a linear scale with endpoints repre-
senting the physical minimum and maximum frequencies possible for the periodic
variables of interest. For example, RR Lyrae type stars are known to have peri-
ods ranging from 0.1 days to 1 day [Chapter 6.8 of Percy (2007)]. Therefore, the
grid endpoints for � will occur at (2π)/1 ≈ 6.28 and (2π)/0.1 = 62.8. In con-
trast, Cepheids generally have periods ranging from 1 day to 100 days, and thus a
grid of frequencies from 0.06 to 6.28 is appropriate [Chapter 6.9 of Percy (2007)].
In periodic variable classification studies where a wide set of periodic variable
classes are of interest, periods may range from a few hours to hundreds of days
[Richards et al. (2011)]. The grid spacing generally depends on the length of time
between the first and last observation. As a star is observed for a longer and longer
time, small errors in frequency result in larger and larger shifts in phase space for
the folded light curve. Richards et al. (2011) used a grid with frequencies spaced
0.1/(max−min), where max and min are the maximum time and minimum times
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of all star observations. We use this spacing in all examples here. For the SDSS-II
RR Lyrae light curves studied in Section 6.2, there are around 20,000 frequencies
in �. The MGLS frequency estimate

ω̂ = argmin
ω∈�

min
a,ρ,β0

	(ω,β0,a,ρ)

is determined by minimizing 	 with respect to β0,a,ρ at every frequency in the
grid. The function 	 can be minimized with respect to β0,a,ρ by performing B

linear regressions. In particular, with the first equality by definition and the third
equality by the angle addition formula,

min
a,ρ,β0

	(ω,β0,a,ρ)

= min
a,ρ,β0

1

2

B∑
b=1

nb∑
i=1

(
mbi − Ab sin(tbiω + ρb) − βb0

σbi

)2

= 1

2

B∑
b=1

min
ab,ρb,β0b

nb∑
i=1

(
mbi − Ab sin(tbiω + ρb) − βb0

σbi

)2

= 1

2

B∑
b=1

min
ab,ρb,β0b

nb∑
i=1

((
mbi − Ab cos(ρb) sin(tbiω)

− Ab sin(ρb) cos(tbiω) − βb0
)
/σbi

)2
.

The summand is the residual sum of squares when regressing (mb1, . . . ,mbnb
) on

to the predictors (sin(tb1ω), . . . , sin(tbnb
ω)) and (cos(tb1ω), . . . , cos(tbnb

ω)) with
known observation weights σ−2

b1 , . . . , σ−2
bnb

.

4.2. Minimizing the PNLL for a necessary subset of �. Compared to mini-
mizing the NLL at a fixed ω, minimizing the PNLL is computationally expensive
(see Section 4.3). Thus, we do not want to compute the PNLL at every element in
a potentially large grid �. Here we show that it is possible to only compute the
PNLL on a subset of � and still be guaranteed of finding the frequency that mini-
mizes the PNLL. The basic idea is to use the NLL 	 as a pointwise lower bound of
the PNLL f in order to quickly check whether a frequency is a potential minimizer
of f . More specifically, since 	(·) ≤ f (·), if for two frequencies ω and ω′ the in-
equality 	(ω) > f (ω′) holds, then ω cannot be the frequency that minimizes f ,
since f (ω) ≥ 	(ω) > f (ω′). The details for an iterative procedure based on this
idea are given in Algorithm 1. The following proposition shows that ω̂ determined
by line 11 of Algorithm 1 is the global minimizer of f across �.

PROPOSITION 4.1. Under the notation of Algorithm 1,

argmin
j∈{1,...,R}

f (ωj ) = argmin
ω∈�

f (ω).
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Algorithm 1 Compute the penalized neg. log likelihood (PNLL) on a subset of �

1: Compute 	(ω) = mina,ρ,β0
	(ω,β0,a,ρ) at every ω ∈ �  NLL Algorithm

2: Let ω1, . . . ,ωG be ordering such that 	(ωk) ≤ 	(ωk+1)

3: i ← 0
4: �u(0) ←∅

5: repeat
6: i ← i + 1
7: f (ωi) ← mina,ρ,β0

f (ωi,β0,a,ρ)  PNLL BCD Algorithm
8: �u(i) = {ω ∈ � : l(ω) > f (ωi)} ∪ �u(i − 1)

9: until ωi+1 ∈ �u(i) or i = G

10: R ← i

11: ω̂ = argminj∈{1,...,R} f (ωj )

PROOF. By line 8 of Algorithm 1, for any r > R there exists h ≤ R such that
	(ωr) > f (ωh). Since f (·) ≥ 	(·) for all ω, we have

f (ωr) ≥ 	(ωr) > f (ωh).

Thus, ωr is not the minimizer of f . �

Algorithm 1 can greatly reduce the number of frequencies for which the PNLL
must be minimized. For instance, with the SDSS-II RR Lyrae of Section 6.2 we
use an � grid with around 20,000 frequencies for each star. However, by using
Algorithm 1, typically only a few hundred of these frequencies are possible min-
imizers of the PNLL. Additionally, by running Algorithm 1, one obtains the a, ρ
and β0 minimizers of the NLL at each ω, which serve as good initialization values
in the block coordinate descent algorithm for solving f (ω), which we turn to next.

4.3. A block coordinate descent algorithm. We now describe an algorithm for
minimizing the PNLL, (3.4), at a particular frequency ω. Since the frequency ω is
fixed in this section, we drop dependence on ω in the NLL [	(ω,β0,a,ρ) becomes
	(β0,a,ρ)] and PNLL [f (ω,β0,a,ρ) becomes f (β0,a,ρ)]. Let wbi = σ−2

bi ,
sbi(ρ) = sin(ωtbi + ρ), and cbi(ρ) = cos(ωtbi + ρ). Thus, we will view the PNLL
as the following function of β0,a and ρ:

f (β0,a,ρ) = 	(β0,a,ρ) + γ1J (a) + γ2J (ρ),(4.1)

where

	(β0,a,ρ) = 1

2

B∑
b=1

nb∑
i=1

wbi

[
βb0 + absbi(ρb) − mbi

]2
,

J1(a) = 1

2
aT(

I − ããT)
a,

J2(ρ) = 1

2
ρT

(
I − 1

B
11T

)
ρ.
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The criterion to be minimized in (4.1) is nonconvex. Consequently, finding a global
optimizer may be too much to ask. Nonetheless, we can obtain a local minimizer
efficiently using an inexact block coordinate descent (BCD) algorithm. In practice,
a local minimizer typically suffices. Our numerical and real data examples demon-
strate that the local optimizer provides better solutions than the current state of the
art. We first describe the BCD algorithm at a high level before detailing the indi-
vidual steps. We minimize the PNLL (4.1) in round robin fashion with respect to
the three blocks of variables β0,a and ρ, holding two of them fixed while mini-
mizing with respect to the third one. At the k + 1th round of updates, we solve in
sequence the three smaller optimization problems:

Update 1: β
(k+1)
0 = argmin

β0

	
(
β0,a(k),ρ(k)),

Update 2: a(k+1) = argmin
a

	
(
β

(k+1)
0 ,a,ρ(k)) + λ1J1(a),

Update 3: ρ(k+1) = argmin
ρ

	
(
β

(k+1)
0 ,a(k+1),ρ

) + λ2J2(ρ).

We emphasize that we do not impose constraints on a and ρ in performing indi-
vidual block updates, but rather impose the constraints at the termination of the
BCD algorithm. We discuss later why we can make this simplification when we
derive the individual block updates. Our motivation for using BCD is that the indi-
vidual updates are simple and fast to compute. We next fill in details on these up-
dates. Derivations of the update rules are given in detail in Appendix B. To stream-
line the following discussion, we define a few terms more compactly. Let sb(ρ) =
(s1b(ρ), . . . , snbb(ρ))T. Define cb(ρ) analogously. Let mb = (m1b, . . . ,mnbb)

T.

Update 1: The intercepts β0. Fix a and ρ. Let β+
0 = argminβ0

f (β0,a,ρ) de-
note the update for β0. The update for β0 separates in its B elements and is given
by

β+
b0 = 〈1,Wb[mb − absb(ρb)]〉

〈1,Wb1〉 ,(4.2)

where Wb ∈ R
nb×nb is a diagonal matrix with ith diagonal element wbi .

Update 2: The amplitudes a. Fix β0 and ρ. Let a+ = argmina f (β0,a,ρ) de-
note the update for a. The update for a requires solving a linear system of equations
whose solution is given by

a+ = E−1
[
I + 1

1/γ1 − ãTE−1ã
ããTE−1

]
ξ ,(4.3)
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where E is a diagonal B × B matrix with bth diagonal element ebb = sb(ρb)
T ×

Wbsb(ρb) + γ1,

ξ =

⎛⎜⎜⎝
〈
s1(ρ1),W1μ1

〉
...〈

sB(ρB),WBμB

〉
⎞⎟⎟⎠ ,

and μb = mb − βb01. We now address why we are able to drop the nonnegativity
constraints on a. Suppose that the mean brightness for a star at time t in some band
varies according to

μ(t) = a sin(ωt + ρ),

where the amplitude a is negative. Then

μ(t) = −|a| sin(ωt + ρ) = |a| sin(ωt + ρ + π),

and so having a “negative amplitude” a with phase ρ is equivalent to having a pos-
itive amplitude |a| with phase ρ + π . Consequently, if at the termination of PGLS
an amplitude is negative, we can simply shift the estimate of the corresponding
phase by π .

Update 3: The phases ρ via MM. Fix β0 and a. Unlike the previous two up-
dates, which required minimizing a convex function, the update for ρ requires min-
imizing a nonconvex function. Nonetheless, it can be effectively attacked using
a majorization–minimization (MM) algorithm [Becker, Yang and Lange (1997),
Lange, Hunter and Yang (2000)] to get an approximate solution to the problem

ρ
(k+1)
0 = argmin

ρ
	
(
β

(k+1)
0 ,a(k+1),ρ

) + λ2J2(ρ).(4.4)

The basic principle behind an MM algorithm is to convert a hard optimization
problem into a sequence of simpler ones. The MM principle requires majorizing
the objective function f (y) by a surrogate function g(y|x) anchored at the current
point x. Majorization is a combination of a tangency condition g(x|x) = f (x) and a
domination condition g(y|x) ≥ f (y) for all y ∈R

d . The associated MM algorithm
is then defined by the iterates xk+1 := argminy g(y|xk). Since

f (xk+1) ≤ g(xk+1|xk) ≤ g(xk|xk) = f (xk),

the MM iterates generate a descent algorithm driving the objective function down-
hill. To update ρ, we take advantage of the fact that for each b

fb(ρb) = 1

2

nb∑
i=1

wbi

[
absbi(ρb) − μbi

]2

is Lipschitz differentiable. This fact can be leveraged to construct a simple convex
quadratic majorization of f as a function of ρ.
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PROPOSITION 4.2. The following function majorizes
∑

b fb(ρb) at the
point ρ̃:

g(ρ|ρ̃) =
B∑

b=1

[
fb(ρ̃b) + f ′(ρ̃b)(ρb − ρ̃b) + Lb

2
(ρb − ρ̃b)

2
]
,

where

Lb = ab

[
abκb + √

nb‖Wbμb‖2
]

and κb = 1TWb1.

The proof is given in Appendix A. The MM algorithm generates an improved
estimate ρ+ of the solution to (4.4) given a previous estimate ρ̃ using the following
update rule:

ρ+ = argmin
ρ

g(ρ|ρ̃) + γ2J2(ρ).(4.5)

There is always a unique minimizer ρ+ to (4.5), since g(ρ|ρ̃) is strongly convex
in ρ. Moreover, ρ+ can be expressed explicitly in terms of ρ̃ as

ρ+ = F−1
[
I + 1

B/γ2 − 1TF−11
11TF−1

]
ζ (ρ̃),(4.6)

where F is a diagonal B × B matrix with bth diagonal element fbb = Lb + γ2 and

ζ (ρ̃) =

⎛⎜⎜⎝
L1ρ̃1 − f ′

1(ρ̃1)
...

LBρ̃B − f ′
B(ρ̃B)

⎞⎟⎟⎠ .

Similar to the nonnegativity constraint on the amplitude, we “enforce” the box
constraint on the phase at the termination of the BCD algorithm. Since the crite-
rion (4.1) is periodic in ρ, we choose the solution that is within the constraint set
[0, π]B . Finally, we note that it is sufficient to perform a single MM update (4.6)
and then set ρ̃ = ρ(k) and ρ(k+1) = ρ+. Applying multiple MM updates (4.6) to
obtain a more precise update for ρ typically does not pay in practice, as β0 and a
may change substantially during early rounds of updates. Moreover, as discussed
below, taking only a single MM update per round of block coordinate updates does
not change the overall convergence of the BCD algorithm.

Complexity and convergence of BCD. Algorithm 2 provides pseudocode of the
BCD algorithm. We update the intercepts β0, amplitudes a and phases ρ in round
robin fashion until the relative change in the variables falls below a defined toler-
ance. A single round of block updates is computationally efficient. Updating β0
requires O(N) operations where N = ∑B

b=1 nb. Updating a requires computing
the diagonal matrix E ∈ R

B×B and vector ξ ∈ R
N , which requires O(N) opera-

tions. Solving the linear system in line 7 of Algorithm 2 requires O(B) operations
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Algorithm 2 Block Coordinate Descent + MM for penalized GLS (PGLS)

Initialize β(0),a(0) and ρ(0) as the solutions to multiband GLS (MGLS).
1: k ← 0
2: repeat
3: for b = 1, . . . ,B do  Update β0

4: β
(k+1)
b0 ← 〈1,Wb[mb − a

(k)
b sb(ρ

(k)
b )]〉/〈1,Wb1〉

5: end for
6: Update E ∈ R

B×B and ξ ∈ R
B with ρ(k) and β

(k+1)
0  Update a

7: a(k+1) ← [E − γ1ããT]−1ξ

8: Update F ∈ R
B×B and ζ ∈ R

B with a(k+1),β
(k+1)
0 , and ρ(k)  Update ρ

9: ρ(k+1) ← [F − γ211T]−1ζ
10: k ← k + 1
11: until convergence

according to the explicit update given in (4.3). Similarly, setting up and solving
the linear system in line 9 to update ρ requires O(N) and O(B) operations, re-
spectively. Thus, the total amount of work per round of block coordinate descent
is O(N) or, in other words, linear in the size of the data. We end this section with
the following convergence result for Algorithm 2.

PROPOSITION 4.3. The iterates (β
(k)
0 ,a(k),ρ(k)) of Algorithm 2 tend to sta-

tionary points of the PNNL at a fixed frequency ω.

The proof is contained in Appendix C.

5. Selection of γ1 and γ2. Recall that the regularization parameter γ1 con-
trols the degree of shrinkage in the amplitude vector a. Small values of γ1 lead to
less shrinkage (amplitudes far from a multiple of ã), and large values of γ1 lead
to more shrinkage (amplitudes close to a multiple of ã). We propose two methods
for selecting the regularization parameters. In Method 1, termed PGLS1, we set
γ1 equal to 0 and γ2 to be very large. This enforces no constraint on amplitudes
but forces the phases to be nearly identical in the different bands. Essentially, this
approach fits a model with a total of 2B + 2 parameters (one phase, one period,
B intercepts and B amplitudes). This model may improve performance for poorly
sampled light curves because it reduces overfitting of MGLS which has a total of
3B + 1 parameters. A disadvantage to this approach is that it does not use known
correlations in amplitude across bands. Additionally, phases are not truly identical
in the different bands, so this approach introduces some model misspecification.
A more nuanced approach is to choose γ1 and γ2 such that the phase and ampli-
tude for poorly sampled light curves match what they would be if they had been
well sampled. Here we propose a computationally efficient and simple data-driven
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alternative that leverages the availability of historical data of well-observed peri-
odic variables. In astronomy, there are existing well-observed light curves where
methods such as MGLS correctly estimate periods, amplitudes and phases. Using
this historical data, we can estimate the scatter of the amplitudes around ã and the
phases around 1. We tune γ1 and γ2 so that the scatter for the poorly observed
amplitude and phase estimates approximately matches the scatter observed in the
historical data. We term this second form of regularization parameter selection
PGLS2.

5.1. Methodology for selecting γ1 and γ2 using historical data. We now detail
the process for selecting γ1. Let a′

1, . . . ,a′
m be the amplitudes from a historical set

of well-observed light curves. One could use MGLS to estimate these quantities.
We assume these quantities have little measurement error because the light curves
have been well observed. In the simulated and real data examples of Section 6, we
assume we have access to m = 100 light curves. Let ã be the normalized mean of
the amplitudes and define the scatter of the amplitudes around ã as

sa = median
i∈{1,...,m} a′T

i

(
I − ããT)

a′
i .(5.1)

Given a set of poorly observed light curves D1, . . . ,Dn, we expect the scatter in the
amplitudes to approximately match sa . For some trial value of the tuning parameter
γ1, define the amplitude fit for Di using PGLS as

ai (γ1) = argmin
a

min
ω,β0,ρ

f (ω,β0,a,ρ|Di;γ1,0)

and the resulting scatter in amplitudes as

sa(γ1) = median
i∈{1,...,n} ai (γ1)

T(
I − ããT)

ai (γ1).(5.2)

As γ1 increases, the amplitude estimates ai (γ1) are pulled toward ã, causing sa(γ1)

to decrease. As γ1 decreases, the amplitude estimates ai (γ1) are pushed away from
ã, causing sa(γ1) to increase. We tune γ1 such that sa(γ1) is approximately equal
to sa . Since sa(γ1) is inversely proportional to γ1, we perform a binary search
to find the optimal value of γ1, using a log linear grid to find initial lower and
upper bounds. We terminate the search when an update to γ1 does not alter any of
the period estimates more than 1%, implying that further changes to γ1 will not
significantly alter the resulting period estimates. An analogous procedure is used
for selecting γ2 by substituting the vector B−1/21 for the vector ã. Since the total
number of stars for which we want to estimate periods can be large, we select 100
light curves for determining sa(γ1) in (5.2), rather than the full set of light curves
for which we seek to estimate periods. A schematic of how historical and new data
are used to estimate the various parameters is given in Figure 5.
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FIG. 5. Historical periodic variable star data comprised of well sampled light curves provide a
guide toward selecting tuning parameters. The scatter variables sa and sρ are estimated on historical
data. A subset of the new data of poorly sampled light curves, for example, the first 100 light curves,
is used to select the tuning parameters γ1 and γ2. We set γ1 and γ2 such that the scatter of amplitudes
and phases approximately matches the scatter of the historical data. The ith lightcurve in the new
data is used to estimate the ith set of model parameters θ i , namely, the ith period, amplitude, phase
and intercept.

5.2. Choice of historical data. In choosing γ1 and γ2 in this work, our histor-
ical data is by construction identically distributed with the poorly sampled light
curves (see Section 6). In practice, for an upcoming astronomical survey, this set-
ting could be replicated by obtaining a large number of measurements on a small
fraction of periodic variable stars and using these as historical data to determine
ã, sa and sρ . While this strategy would ensure the historical sample is representa-
tive of the poorly sampled light curves, it would require additional data collection.
Another strategy is to use data from a past survey as historical data to determine
ã, sa and sρ . This strategy will work well if light curve shape (in particular, am-
plitude and phase scatter) for a particular class of variable stars are similar in both
the past survey and the upcoming survey. From a Bayesian perspective (see Sec-
tion 3.4), using historical data which does not precisely match current data is sim-
ilar to choosing a misspecified prior on a and ρ. As long as this prior is not too far
from the truth, we expect that it will improve performance for period estimation.

6. Data analysis. We compare the performance of period estimation algo-
rithms on simulated and real data. The four algorithms we use are GLS, MGLS,
PGLS1 and PGLS2. GLS is the period found using a single band. We use the band
that tends to have the largest amplitude and thus would be most likely to detect
the true period. MGLS fits a separate sinusoid to each band with no penalties on
amplitude and phase [equation (3.3)]. PGLS1 and PGLS2 are both forms of PGLS
with different procedures for selecting γ1 and γ2 (see Section 5 for details).

6.1. Simulations. We simulate 500 5-band light curves from the sinusoidal
likelihood model. Figure 6(a) and 6(b) show the distribution of phases and am-
plitudes. These amplitudes and phases are drawn from distributions meant to ap-
proximately match correlations seen in real data such as in Figures 3 and 4. The
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FIG. 6. Correlations in simulated (a) phases and (b) amplitudes. These approximately match cor-
relations observed in real data, such as in Figures 3 and 4.

periods are drawn uniformly on [0.2,1.0] days. This represents the plausible range
of periods for RR Lyrae type stars, which we study using real data in the follow-
ing section. We divide the light curves into two groups: 100 historical light curves
used for estimating ã, sa and sρ [see (5.1)] and 400 light curves for testing. We
downsample the test light curves to 5, 10 and 15 observations per band to simu-
late difficult period recovery regimes. Table 1 contains the fraction of light curve
periods estimated to within 1% and 5% of truth for each method for 5, 10 and 15
observations per band. PGLS2 dominates GLS, MGLS and PGLS1 in each setting.
Scatterplots of true period versus period estimate for MGLS and PGLS2 for 5, 10
and 15 observations per band are contained in Figure 7. Both MGLS and PGLS2
more often underestimate than overestimate the truth (more points below identity
line than above in Figure 7). This is likely caused by the fact that the sinusoid func-
tion changes more rapidly for small periods. Lower period ranges correspond to
more complex models. Hastie, Tibshirani and Friedman (2009) (Section 7.8) dis-
cusses a similar issue for classification using sinusoids. In Figure 8 we plot phase
estimates for MGLS and PGLS2 for 5 and 10 observation per band test sets. As

TABLE 1
Fraction of period estimates within 1% and 5% of truth for simulation data

Within 1% Within 5%

Obs./Band GLS MGLS PGLS1 PGLS2 GLS MGLS PGLS1 PGLS2

5 0.01 0.04 0.07 0.20 0.06 0.08 0.09 0.24
10 0.04 0.40 0.50 0.80 0.07 0.42 0.52 0.80
15 0.21 0.87 0.90 0.96 0.25 0.87 0.90 0.96
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FIG. 7. Scatterplots of true period versus estimate using simulated data for MGLS and PGLS2 with
5, 10 and 15 observations per band for the test set. The MGLS estimates are in the left column and
the PGLS2 estimates are in the right column. The × are estimates further than 1% away from truth,
while the ◦ are estimates within 1% of truth. The PGLS2 estimates are significantly more accurate.
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FIG. 8. Correlations in phase estimates for simulated data with (a) 5 observations per band and
(b) 15 observations per band. The upper diagonals in each plot are PGLS2 estimates. The lower di-
agonals are MGLS estimates. The phases estimates using PGLS2 appear more realistic than MGLS,
especially for light curves with 5 observations per band.

expected, PGLS2 phases are more concentrated around the vector 1. For 15 ob-
servations per band, the MGLS estimates show significant concentration around 1,
indicative that MGLS is estimating phases correctly with 15 observations per band.
Notice that PGLS2 eliminates phase estimates near (−π,π) and (π,−π). Since
these are plausible phases, this tendency could result in incorrect period estimates
for some stars. A more refined penalty term for phase (J2) in PGLS2 could address
this issue.

6.2. SDSS stripe-82 data. Sesar et al. (2010) identified 483 periodic variable
stars of the class RR Lyrae in the Sloan Digital Sky Survey II (SDSS-II). These
light curves were sampled approximately 30 times per band in five bands. Sesar
et al. (2010) estimated periods for these stars using a Supersmoother routine in
Reimann (1994). Visual inspection suggests that these period estimates are accu-
rate. While Supersmoother is accurate with well-sampled light curves, with poorly
sampled light curves it suffers the same problems as MGLS. This is why Sesar
et al. (2007) did not attempt period estimation when SDSS-I collected a me-
dian of only 10 observations per band for these stars. Ongoing surveys, such as
PanSTARRS1, currently have data roughly the quality of SDSS-I in terms of num-
ber of observations per band [Schlafly et al. (2012)]. Here we study period estima-
tion with poorly sampled light curves by downsampling SDSS-II data and com-
paring GLS, MGLS, PGLS1 and PGLS2 period estimates to the Supersmoother
estimates computed using the entire light curves.

We obtained 450 of 483 Sesar et al. (2010) RR Lyrae light curves from a public
data repository [Ivezić et al. (2007)]. To test period estimation with poorly sam-
pled light curves, we split the 450 light curves into 100 historical and 350 test. As
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TABLE 2
Fraction of period estimates within 1% and 5% of truth for SDSS data

Within 1% Within 5%

Obs./Band GLS MGLS PGLS1 PGLS2 GLS MGLS PGLS1 PGLS2

5 0.01 0.20 0.22 0.35 0.05 0.22 0.25 0.36
10 0.11 0.53 0.57 0.59 0.16 0.54 0.57 0.59
15 0.31 0.68 0.68 0.68 0.34 0.68 0.68 0.68

with the simulated data, we downsample the test light curves to 5, 10 and 15 mea-
surements per band and compare period estimation accuracy. Table 2 shows the
fraction of period estimates within 1% and 5% of their true value. The methods
that use multiple bands (MGLS, PGLS1 and PGLS2) outperform GLS. PGLS2
increases the fraction of periods estimated correctly for 5 and 10 observations per
band. Scatterplots of true period versus period estimate for MGLS and PGLS2
are given in Figure 9. In general, the improvement of PGLS1 and PGLS2 over
MGLS appears less for the SDSS data here than the simulated data. The scatter-
plots in Figure 9 show errors concentrating around several nonlinear functions of
the true period. This is likely due to the phenomenon of pseudo-aliasing. When
observations are taken at regular intervals of 1 day, say, ti = i, the frequencies
ω′ = ω + 2πk for k ∈ Z cannot be distinguished because

sin
(
ω′ti + ρ

) = sin
(
(ω + 2πk)ti + ρ

) = sin(ωti + 2πkti + ρ) = sin(ωti + ρ).

Converting to period scale (p = 2π/ω), p′ = p/(1 + pk) are indistinguishable for
any k ∈ Z. This is known as aliasing. While the observations from SDSS are not
exactly regular, most observations on the same star are taken at approximately the
same time each night with stretches of missing nights due to weather and sea-
sons where the star is behind the sun. This causes pseudo-aliasing where it is
difficult (though not impossible) to distinguish between a true period p and any
p′ = p/(1 + pk) for k ∈ Z. The three lines observed in the scatterplots are for
k = −1,1,2. This issue did not arise with the simulated data because the time
sampling was less regular. Period estimation methods will likely perform better on
surveys with a less regular cadence. See Scargle (1982) for a discussion of pseudo-
aliasing. In Figure 10 we plot phase correlations using MGLS and PGLS2 for 5
and 15 measurements per band. For both 5 and 15 observations per band, PGLS2
produces realistic phase estimates concentrated around the identity line. With 15
observations per band, the concentration exhibited by MGLS and PGLS2 is quite
close. This is evidence that the penalty terms J1 and J2 are working well.

7. Conclusions. Accurate multiband period estimation is important for sev-
eral problems in modern astronomy. Current methods, however, fail when the light
curves are poorly sampled in all measurement bands. To address this deficiency, we
introduced two new methods, MGLS and PGLS. Both methods generalize a well-
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FIG. 9. Scatterplots of true period versus estimate for MGLS and PGLS2 for SDSS with 5, 10 and
15 observations per band for the test set.
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FIG. 10. Correlations in SDSS phase estimates with (a) 5 observations per band and (b) 15 ob-
servations per band for the SDSS-II. The results are similar to the simulated data in Figure 8. In
particular, MGLS period estimates with 5 observations per band show little clustering around 1. The
PGLS2 estimates are more physically realistic.

known approach to period estimation in astronomy. However, PGLS is the first
multiband period estimation algorithm for variable stars that uses known correla-
tions in amplitude and phase across bands to improve accuracy. With simulations
and real data, PGLS outperforms MGLS and GLS. Computing the PGLS estimate
requires minimizing a more complicated function than computing the MGLS es-
timate. Nonetheless, the PGLS estimate can be rapidly obtained using our inexact
BCD algorithm, which requires computational effort that scales linearly with the
size of the data. We also showed that even faster PGLS estimates can be obtained
by first estimating the computationally cheaper MGLS estimator at different can-
didate periods and using these estimates to reduce drastically the number of can-
didate periods on which to compute the PGLS estimate.

In this work we estimated population level uncertainty on the period estimates,
that is, the fraction of light curves for which the period estimate is within a cer-
tain fraction of the truth. A more difficult problem is to estimate for a given light
curve the uncertainty in the period estimate determined by MLGS or PGLS. Some
progress has been made on this problem for LS and GLS. For LS, Lomb (1976)
found the distribution of a test statistic for testing the hypotheses of a star having
constant brightness versus the star have brightness with frequency ω. Reimann
(1994) showed that, under certain conditions on the sampling times, the LS period
estimate is asymptotically normal. While this result is useful when n is large, it
does not appear appropriate for the setting of limited data for which PGLS is in-
tended. Examination of Figures 7 and 9 suggests that, with few observations, the
MGLS and PGLS period estimates are not normally distributed. In future work,
we plan to develop measures of uncertainty for MGLS and PGLS estimates.
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Although we have focused on an application in astronomy, MGLS and PGLS
have potential utility whenever multiple correlated periodic signals can be jointly
modeled. Such problems arise in spatio-temporal modeling, in particular, geo-
graphic epidemiology [Torabi and Rosychuk (2010)] and air quality monitoring
[Keller et al. (2015)]. In both these cases, time series data are collected at fixed
geographical locations and much of the variation is seasonal or periodic. Measure-
ments are often irregular and some collection sites take more frequent and compre-
hensive measurements than others. A key observation is that measurements vary
smoothly with respect to geographic locality. A trade-off similar to that faced in
the multiband problem is typical where a greater number of collection sites can
provide a wider spatial coverage with each site taking fewer temporal samples. We
anticipate that adapting our proposed methods, especially PGLS, to these problems
could enable more experiments to be run concurrently by exploiting the spatial cor-
relations.

Finally, we note that while this work was under review and posted on arXiv
[Long, Chi and Baraniuk (2014)], VanderPlas and Ivezić (2015) developed two al-
gorithms for multiband period estimation. One of these methods, the “multi-phase”
model, is identical to MGLS. A second model, the “shared-phase” model, uses
a ridge penalty to shrink mean magnitudes in different bands toward a common
value. Appendix B of VanderPlas and Ivezić (2015) contains some comparison of
the approaches.

Software for implementing MGLS and PGLS can be found in the multiband
package for R, available on CRAN. The code for reproducing the results in this
paper is available by contacting the authors.

APPENDIX A: MAJORIZATION IN PHASE UPDATE

We provide the proof of Proposition 4.2.

PROOF OF PROPOSITION 4.2. Since the function we wish to majorize is Lips-
chitz differentiable, we can apply the quadratic upper bound principle to construct
a convex quadratic majorization [Böhning and Lindsay (1988)]. The gradient and
Hessian of fb(ρ) are given by

f ′
b(ρ) = ab

〈
absb(ρ) − μb,Wbcb(ρ)

〉
and

f ′′
b (ρ) = ab

[〈
abcb(ρ),Wbcb(ρ)

〉 + 〈
μb − absb(ρ),Wbsb(ρ)

〉]
.

It is straightforward to establish the following global upper bound on the Hessian.
Let κb = 1TWb1; then

f ′′
b (ρ) ≤ ab

[
abcb(ρ)TWbcb(ρ) + 〈

Wbμb, sb(ρ)
〉]

≤ ab

[
abκb + 〈

Wbμb, sb(ρ)
〉]

(A.1) ≤ ab

[
abκb + ‖Wbμb‖2

∥∥sb(ρ)
∥∥

2

]
≤ ab

[
abκb + √

nb‖Wbμb‖2
]
.
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The exact second order Taylor expansion of fb(ρb) about a point ρ̃ is given by

fb(ρ) = fb(ρ̃) + f ′
b(ρ̃)(ρ − ρ̃) + 1

2f ′′
b

(
ρ)(ρ − ρ̃)2,(A.2)

where ρ ∈ αρ + (1 − α)ρ̃ for some α ∈ (0,1). The relations (A.1) and (A.2)
together yield the desired result. �

APPENDIX B: DERIVATION OF UPDATE RULES FOR
BCD-MM ALGORITHM

We give detailed derivations of the update rules given in (4.2), (4.3) and (4.4).

Update 1: The intercepts β0. Fix a and ρ. Let β+
0 = argminβ0

f (β0,a,ρ)

denote the update for β0. The update for β0 separates in its B elements and is
given by the minimizers to B univariate convex quadratic functions

β+
b0 = argmin

β

[
β1 + absb(ρb) − mb

]TWb

[
β1 + absb(ρb) − mb

]
,(B.1)

where Wb ∈ R
nb×nb is a diagonal matrix with ith diagonal element wbi . It is

straightforward to show that the solution to the optimization problem (B.1) is given
by

β+
b0 = 〈1,Wb[mb − absb(ρb)]〉

〈1,Wb1〉 .

Update 2: The amplitudes a. Fix β0 and ρ. Let a+ = argmina f (β0,a,ρ)

denote the update for a. To obtain the update a+, we minimize the convex quadratic
function

a+ = argmin
a

1

2

B∑
b=1

nb∑
i=1

wbi

[
absbi(ρb) − μbi

]2 + γ1

2
aT[

I − ããT]
a,(B.2)

where μbi = mbi −βb0. Let μb = mb −βb01. Setting the derivative of the quadratic
function in (B.2) with respect to ab equal to zero yields the B stationary conditions

sb(ρb)
TWbsb(ρb)ab − 〈

sb(ρb),Wbμb

〉 + γ1
[
ab − 〈ã,a〉ãb

] = 0.

The stationarity conditions imply that the update a+ is the solution to the following
linear system of equations: [

E − γ1ããT]
a = ξ ,

where E is a diagonal B × B matrix with bth diagonal element ebb = sb(ρb)
T ×

Wbsb(ρb) + γ1 and

ξ =

⎛⎜⎜⎝
〈
s1(ρ1),W1μ1

〉
...〈

sB(ρB),WBμB

〉
⎞⎟⎟⎠ .
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Applying the matrix inversion lemma enables us to solve the system with a single
matrix-vector multiply

a+ = E−1
[
I + 1

1/γ1 − ãTE−1ã
ããTE−1

]
ξ .

Update 3: The phases ρ via MM. Fix β0 and a. The MM algorithm generates
an improved estimate ρ+ of the solution to (4.4) given a previous estimate ρ̃ using
the following update rule:

ρ+ = argmin
ρ

g(ρ|ρ̃) + γ2J2(ρ),(B.3)

where g is the majorization given in Proposition 4.2. There is always a unique
minimizer ρ+ to (B.3), since g(ρ|ρ̃) is strongly convex in ρ. We now show how
ρ+ can be expressed explicitly in terms of ρ̃. Note that

∂

∂ρb

[
g(ρ|ρ̃) + γ2J2(ρ)

] = f ′
b(ρ̃b) + Lb(ρb − ρ̃b) + γ2

[
ρb − 1

B

B∑
b′=1

ρb′

]
.(B.4)

The stationarity conditions imply that the update ρ+ is the solution to the linear
system of equations [

F − γ2

B
11T

]
ρ = ζ (ρ̃),(B.5)

where F is a diagonal B × B matrix with bth diagonal element fbb = Lb + γ2 and

ζ (ρ̃) =

⎛⎜⎜⎝
L1ρ̃1 − f ′

1(ρ̃1)
...

LBρ̃B − f ′
B(ρ̃B)

⎞⎟⎟⎠ .

Again we turn to the matrix inversion lemma to solve (B.5) with a single matrix-
vector multiply

ρ+ = F−1
[
I + 1

B/γ2 − 1TF−11
11TF−1

]
ζ (ρ̃).

APPENDIX C: CONVERGENCE OF THE BCD-MM ALGORITHM

We provide the proof of Proposition 4.3.

PROOF OF PROPOSITION 4.3. The convergence theory of monotone algo-
rithms, like BCD and MM, hinge on the properties of the algorithm map ψ(x)

that returns the next iterate given the last iterate. For easy reference, we state a
simple version of Meyer’s monotone convergence theorem [Meyer (1976)], which
is instrumental in proving convergence in our setting.
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THEOREM C.1. Let f (x) be a continuous function on a domain S and ψ(x)

be a continuous algorithm map from S into S satisfying f (ψ(x)) < f (x) for all
x ∈ S with ψ(x) �= x. Suppose for some initial point x0 that the set Lf (x0) ≡ {x ∈
S : f (x) ≤ f (x0)} is compact. Then (a) all cluster points are fixed points of ψ(x),
and (b) limm→∞ ‖xm+1 − xm‖ = 0.

In the context of Algorithm 2, the function f is the PNLL (4.1). Since Algo-
rithm 2 optimizes over the triple x = (β0,a,ρ) for a fixed candidate frequency ω,
we take the set S = R×R× [−π/2, π/2]. We first use Theorem C.1 to establish
that the iterates of the inexact BCD algorithm tend toward the fixed points of an
algorithm map. We then show that the fixed points of the algorithm map corre-
spond to the stationary points of the PNLL. In order to apply Theorem C.1, we
need to (i) identify a continuous algorithm map ψ(x) that corresponds to Algo-
rithm 2, (ii) check that f (x) > f (ψ(x)) if x �= ψ(x), and (iii) identify an x0 ∈ S so
that the set Lf (x0) is compact. The first step is to identify an algorithm map ψ(x)

and check that it is continuous. We formalize how to obtain x+ ≡ ψ(x) from x via
the composition of three submaps, each of which corresponds to a block variable
update

ψ1(x) = argmin
β0

	(β0,a,ρ),

ψ2(x) = argmin
a

	(β0,a,ρ) + λ1J1(a),

ψ3(x) = argmin
ρ′

g
(
ρ′|ρ) + λ2J2

(
ρ′).

Then the algorithm map that corresponds to the BCD algorithm is

ψ(x) =
⎛⎜⎝ ψ1(β0,a,ρ)

ψ2
(
ψ1(β0,a,ρ),a,ρ

)
ψ3

(
ψ1(β0,a,ρ),ψ2

(
ψ1(β0,a,ρ),a,ρ

)
,ρ

)
⎞⎟⎠ .

Inspecting the block updates (4.2), (4.3) and (4.6), we see that the submaps ψ1,ψ2
and ψ3 are each continuous. Therefore, the composition map ψ is also continu-
ous. The second step is to verify that f (x) > f (ψ(x)) if x �= ψ(x). Consider the
intermediate iterates

β+
0 ≡ ψ1

(
(β0,a,ρ)

)
,

a+ ≡ ψ2
((

β+
0 ,a,ρ

))
,

ρ+ ≡ ψ3
((

β+
0 ,a+,ρ

))
.

For any x ∈ S, we have

f (x) ≥ f
((

β+
0 ,a,ρ

)) ≥ f
((

β+
0 ,a+,ρ

)) ≥ f
(
x+)

.

If, however, x is not a fixed point of ψ , namely, ψ(x) �= x, then at least one of
the above inequalities is strict and, therefore, f (x) > f (ψ(x)). The third step is
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to identify an x0 ∈ S so that the set Lf (x0) is compact. Note that f blows up
for ‖a‖ → ∞ or ‖β0‖ → ∞. Therefore, the set Lf (x0) is compact for any initial
x0 ∈ S. By Theorem C.1, it follows that the cluster points of the iterates of Algo-
rithm 2 are fixed points of the algorithm map ψ(x) corresponding to Algorithm 2.
To complete the proof, we just need to show that every fixed point of ψ(x) is a
stationary point of the PNLL (4.1). If x is a fixed point of ψ , then

∂

∂β0
f (x) = 0,

∂

∂a
f (x) = 0,

∂

∂ρ

[
g(ρ|ρ) + λ2J2(ρ)

] = 0.

In light of (B.4), it is clear that the last condition is equivalent to

∂

∂ρ
f (x) = 0.

Therefore, every cluster point of the iterate sequence generated by Algorithm 2 is
a stationary point of the PNLL (4.1). �
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